当前位置:
X-MOL 学术
›
Nanophotonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bidirectional high-speed optical wireless communication with tunable large field of view assisted by liquid crystal metadevice
Nanophotonics ( IF 6.5 ) Pub Date : 2024-09-27 , DOI: 10.1515/nanoph-2024-0434 Mian Wu, Chao Yang, Yuhan Gong, Lin Wu, Ming Luo, Ying Qiu, Yongquan Zeng, Zile Li, Zichen Liu, Chao Li, Hanbing Li, Xi Xiao, Zhixue He, Guoxing Zheng, Shaohua Yu, Jin Tao
Nanophotonics ( IF 6.5 ) Pub Date : 2024-09-27 , DOI: 10.1515/nanoph-2024-0434 Mian Wu, Chao Yang, Yuhan Gong, Lin Wu, Ming Luo, Ying Qiu, Yongquan Zeng, Zile Li, Zichen Liu, Chao Li, Hanbing Li, Xi Xiao, Zhixue He, Guoxing Zheng, Shaohua Yu, Jin Tao
Beam-steered infrared (IR) light communication has gained tremendous attention as one of the solutions of congested wireless communication traffic. High performance active beam-steering devices play a crucial role in data allocation and exchange. Conventional beam-steering devices such as spatial light modulator (SLM) and micro-electrical mechanical system (MEMS) mirror and the current emerging nonmechanical beam-steering metasurface-based devices are challenging to realize a large tunable steering angle beyond several degrees, which significantly hinders the spatial application of optical wireless communications (OWC). Herein, an angle-magnified liquid crystal (LC) metadevice consisting of LC metasurfaces and a liquid crystal on silicon (LCoS) is proposed to realize active beam steering with a tunable large field of view (FOV). Based on the angle-magnified tunable LC metadevice, an intelligent bidirectional high-speed OWC system is experimentally demonstrated, achieving an actively enlarged FOV of 20° × 20°, with a data rate of 200 Gbps over the S/C/L band for both uplink and downlink transmission over a propagation distance of 1.5 m in free space. The proposed OWC system opens a new avenue for the future high performance wireless data transmission.
中文翻译:
液晶元器件辅助的可调谐大视场双向高速光无线通信
光束控制红外(IR)光通信作为无线通信流量拥塞的解决方案之一受到了极大的关注。高性能主动光束控制设备在数据分配和交换中发挥着至关重要的作用。传统的光束转向装置,如空间光调制器(SLM)和微机电系统(MEMS)镜,以及当前新兴的基于超表面的非机械光束转向装置,要实现超过几度的大可调转向角具有挑战性,这显着阻碍了光无线通信(OWC)的空间应用。在此,提出了一种由液晶超表面和硅基液晶(LCoS)组成的角度放大液晶(LC)元器件,以实现具有可调大视场(FOV)的主动光束控制。基于角度放大可调谐LC元器件,实验演示了一种智能双向高速OWC系统,实现了20°×20°的主动放大FOV,在S/C/L频段上的数据速率为200 Gbps在自由空间中,上行链路和下行链路传输距离为 1.5 m。所提出的 OWC 系统为未来高性能无线数据传输开辟了一条新途径。
更新日期:2024-09-27
中文翻译:
液晶元器件辅助的可调谐大视场双向高速光无线通信
光束控制红外(IR)光通信作为无线通信流量拥塞的解决方案之一受到了极大的关注。高性能主动光束控制设备在数据分配和交换中发挥着至关重要的作用。传统的光束转向装置,如空间光调制器(SLM)和微机电系统(MEMS)镜,以及当前新兴的基于超表面的非机械光束转向装置,要实现超过几度的大可调转向角具有挑战性,这显着阻碍了光无线通信(OWC)的空间应用。在此,提出了一种由液晶超表面和硅基液晶(LCoS)组成的角度放大液晶(LC)元器件,以实现具有可调大视场(FOV)的主动光束控制。基于角度放大可调谐LC元器件,实验演示了一种智能双向高速OWC系统,实现了20°×20°的主动放大FOV,在S/C/L频段上的数据速率为200 Gbps在自由空间中,上行链路和下行链路传输距离为 1.5 m。所提出的 OWC 系统为未来高性能无线数据传输开辟了一条新途径。