当前位置:
X-MOL 学术
›
Int. J. Damage Mech.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Experimental analysis of extrusion-based additive manufacturing process of bio-composite NiTi alloy
International Journal of Damage Mechanics ( IF 4.0 ) Pub Date : 2024-09-27 , DOI: 10.1177/10567895241282229 Abel Cherouat, Thierry Barriere, Hong Wang
International Journal of Damage Mechanics ( IF 4.0 ) Pub Date : 2024-09-27 , DOI: 10.1177/10567895241282229 Abel Cherouat, Thierry Barriere, Hong Wang
In this study, a comprehensive investigation was conducted to explore the material extrusion process of NiTi shape-memory alloy-based bio-composite polymeric matrix. Polylactic acid PLA+ Stearic Acid polymeric matrix are performed in order to develop an environmentally friendly process for manufacturing feedstocks with [Formula: see text] nickel-titanium powders for employed in the 3D printing process. The additive manufacturing process based on the extrusion of materials will be studied at all stages (feedstock manufacturing with nickel-titanium powders, 3D printing of bio-composite green part, thermal debinding, and densification by solid-state diffusion) using experimental approaches, analytical approaches to predict printability index and thermo-physical analyses for the formulation of NiTi and biocomposite binders. Printing parameters were optimized by analysing the microstructure, rheological, mechanical properties of feedstock and 3D printed parts. Static mechanical tests will be performed in association with numerical modelling to study the evolution of damage for fully densified SMA specimens in order to describe the ductile failure of 3D printed specimens. Micromechanical phenomenological constitutive models are used in Finite Element software and which can account for the damage localization, initiation and damage growth based on continuum damage mechanics. The results of this study can be used to optimize the extrusion process parameters for different materials and can be helpful for researchers and industrialists to further explore and develop sustainable and eco-friendly materials.
中文翻译:
生物复合NiTi合金挤压增材制造工艺实验分析
本研究对镍钛形状记忆合金基生物复合聚合物基体的材料挤出工艺进行了全面的研究。采用聚乳酸 PLA+ 硬脂酸聚合物基质,以开发一种环保工艺,用于制造用于 3D 打印工艺的[化学式:见正文]镍钛粉末原料。基于材料挤出的增材制造工艺将在各个阶段(镍钛粉末原料制造、生物复合材料绿色部件的 3D 打印、热脱脂和固态扩散致密化)进行研究,采用实验方法、分析方法预测镍钛和生物复合材料粘合剂配方的适印性指数和热物理分析的方法。通过分析原料和 3D 打印零件的微观结构、流变学、机械性能来优化打印参数。将结合数值模型进行静态机械测试,以研究完全致密 SMA 样本的损伤演变,从而描述 3D 打印样本的延展性失效。有限元软件中使用微机械唯象本构模型,可以根据连续损伤力学解释损伤定位、引发和损伤增长。这项研究的结果可用于优化不同材料的挤出工艺参数,有助于研究人员和工业家进一步探索和开发可持续和环境友好的材料。
更新日期:2024-09-27
中文翻译:
生物复合NiTi合金挤压增材制造工艺实验分析
本研究对镍钛形状记忆合金基生物复合聚合物基体的材料挤出工艺进行了全面的研究。采用聚乳酸 PLA+ 硬脂酸聚合物基质,以开发一种环保工艺,用于制造用于 3D 打印工艺的[化学式:见正文]镍钛粉末原料。基于材料挤出的增材制造工艺将在各个阶段(镍钛粉末原料制造、生物复合材料绿色部件的 3D 打印、热脱脂和固态扩散致密化)进行研究,采用实验方法、分析方法预测镍钛和生物复合材料粘合剂配方的适印性指数和热物理分析的方法。通过分析原料和 3D 打印零件的微观结构、流变学、机械性能来优化打印参数。将结合数值模型进行静态机械测试,以研究完全致密 SMA 样本的损伤演变,从而描述 3D 打印样本的延展性失效。有限元软件中使用微机械唯象本构模型,可以根据连续损伤力学解释损伤定位、引发和损伤增长。这项研究的结果可用于优化不同材料的挤出工艺参数,有助于研究人员和工业家进一步探索和开发可持续和环境友好的材料。