Molecular Cancer ( IF 27.7 ) Pub Date : 2024-09-28 , DOI: 10.1186/s12943-024-02127-3 Judith S. Hecker, Hana Algül, Anna L. Illert, Florian Bassermann
The Technical University of Munich and the Ludwig Maximilian University Munich are both top-ranked universities on the national and international level and distinguished as “elite universities” within the national German Research Foundation (DFG)-funded excellence program. Both sites are established and leading cancer research institutions in Europe that have joined forces within the Comprehensive Cancer Center Munich (CCCM). This positions CCCM as a prominent global leader dedicated to advancing excellence in research and education in the field of cancer. The clear vision and goal of the CCCM is the guidance of clinical trials from inception to completion, focusing on the best research and science to strengthen the development of biologically and technologically innovative therapies and diagnostics. Supplemented by multidisciplinary programs for bi-directional translation, proof-of-concept studies and clinical research programs, these focus areas are further strengthened by a dedicated infrastructure for data management and artificial intelligence (AI). Patient participation is another key focus of the CCCM’s joint activities, enhanced through novel establishments such as a Patient Advisory Board (PAB) which advocates for patients and families, identifies new areas for action, and addresses challenges relevant to them. Collaborative committees and task forces provide recommendations to the CCCM to support these efforts. Further, the CCCM strongly emphasizes its clinical and scientific interactions with oncologists outside the university hospitals. Continuous exchange of information on prevention, cancer-related physical/psychological challenges, and recent developments in cancer medicine and treatment modalities as well as outreach activities are pursued at multiple levels.
At the Technical University of Munich (TUM), the Comprehensive Cancer Center (CCCM-TUM) is deeply committed to fostering collaboration across all disciplines and departments focused on cancer medicine. As a vital partner of the TUM Cancer Center, CCCM-TUM plays a key role in the overarching governance within the faculty, offering stakeholders opportunities to collaborate and translate discoveries into innovations. In this capacity, it coordinates all activities related to cancer medicine and advocates for the interests of numerous basic and clinical researchers.
In this article, we would like to highlight some TUM specific activities, particularly focusing on the preclinical and clinical structures of the Department of Hematology/Oncology (https://med3.mri.tum.de). The content thus does not claim to provide a complete representation of research activities at the TUM Cancer Center.
Structurally, the TranslaTUM (Central Institute for Translational Cancer Research: https://www.translatum.tum.de) stands out as a uniquely established central research institute situated in close proximity to the TUM University Hospital. This initiative is dedicated to fostering translational research in medicine (Fig. 1). By emphasizing various interdisciplinary approaches to tackle complex medical challenges, TranslaTUM seeks to accelerate the development of novel treatments and focuses on bridging the gap between laboratory discoveries and clinical applications, facilitating the rapid implementation of innovative therapies and technologies into patient care.
Preclinical research marks a cornerstone within the research concept of the TUM Hematology/Oncology Department that directly feeds into early compound/cellular therapy development and early phase clinical trials. We here exemplify two focus areas of the department, targeted protein degradation (TPD) approaches and cellular immunotherapeutic strategies.
Targeted protein degradation (TPD) is a novel therapeutic approach that specifically exploits the degradative nature of the ubiquitin-proteasome system (UPS) and involves the selective elimination of disease-causing proteins within cells. This is achieved using molecules like proteolysis targeting chimeras (PROTACs) and molecular glues, which facilitate the binding of target proteins to the cell’s natural degradation machinery. Unlike traditional inhibitors that merely block protein function, TPD leads to the complete degradation of the target proteins, providing a more definitive therapeutic outcome. This innovative strategy is particularly valuable for addressing cancers that involve proteins previously deemed “undruggable” by conventional methods. Next to TPD approaches, aberrant ubiquitin networks that play critical roles in cancer development and progression by disrupting the normal regulation of protein degradation and signaling pathways are a focus of this research program. Indeed, dysregulation within the UPS can lead to the accumulation of oncogenic proteins or the degradation of tumor suppressor proteins, thereby promoting uncontrolled cell growth. Mutations or alterations in ubiquitin ligases (E3s) and deubiquitinases (DUBs) are often observed in various cancers, contributing to malignancy and resistance to therapy. These aberrations can affect key processes such as DNA repair, apoptosis, cell cycle control, metabolism and immune escape further driving cancer pathogenesis. Targeting the components of aberrant ubiquitin networks offers a promising avenue for developing novel cancer therapies aimed at restoring normal cellular functions.
The concept of discovery-based science on the ubiquitin system combined with an application approach for academic compound development focusing on early ligase/DUB inhibitors and degraders of the PROTAC and molecular glue family marks the cornerstone of the German Research Foundation (DFG) funded Collaborative Research Center CRC/TRR 387 “Functionalizing the Ubiquitin System against Cancer - UbiQancer”. This Munich based network in collaboration with the University of Würzburg and the University of Frankfurt was granted funding in 2024 and assembles the key national expertise in ubiquitin based clinical medicine, cancer biology, structural biology, medicinal chemistry and computational biology. This structure constitutes the central German network to bridge the imminent implementation gap of ubiquitin-based vulnerability and degrader technology research in cancer and the application of these insights into early academic compound development.
The broad Cellular Immunotherapy Program within the Hematology/Oncology Department at TUM encompasses an extensive approach to pioneering advancements in oncological therapeutics through cutting-edge immunotherapeutic modalities. This initiative is designed to refine cancer treatment paradigms by employing innovative therapeutic strategies, such as tumor infiltrating lymphocytes (TILs), T-cell receptor (TCR) and chimeric antigen receptor (CAR) T cells (CAR-T), that leverage the immune system’s potential against malignancies. The large-scale program is embedded within central structures that enhance research capabilities and collaborative efforts including the Bavarian Center for Cancer Research (BZKF) lighthouse “Cellular Immunotherapies” and other German networks with focus on lymphocyte engineering for therapeutic synthetic immunity (LETSimmun CRC/TRR 338). Specifically, we are engaged in the development of novel techniques for cell engineering, utilizing pioneering gene editing technologies to enhance the effectiveness of immunotherapies - also harnessing the innate cell properties of natural killer (NK) cells. Additionally, our program focuses on multifactorial determinants of response to immunotherapy, including interactions with the bone marrow (BM) microenvironment, the presence of clonal hematopoiesis and correlations with the gut microbiome. Further, our preclinical research program aims to elucidate resistance mechanisms to immunotherapy. Here, we particularly focus on strategies to enhance and restore the expression of key immunotherapy targets by modulating post-translational modifications, specifically ubiquitylation and phosphorylation, to prevent protein degradation. Additionally, we use this approach to investigate strategies to decrease the expression of immune cell inhibitory ligands on tumor cells, aiming to improve the efficacy of immune checkpoint inhibitory therapies. We anticipate that such insights, along with others derived from preclinical research, will pave the way for investigator-initiated trials (IITs) and will direct future cellular immunotherapeutic strategies.
The TUM Hematology/Oncology Department is dedicated to enhancing the standard of care for oncology patients within the Munich Metropolitan Region, with an emphasis on precision medicine and advanced prevention strategies. This will be exemplified through two key clinical focus areas: the Center of Personalized Medicine and the CHIP Clinic TUM.
The Center of Personalized Medicine (ZPM) at TUM was founded to foster precision medicine across all areas of healthcare. The aim of the ZPM is to treat each patient optimally by integrating individual factors extensively, exceeding the functional diagnosis of the disease. Consequently, this also includes the constant tailoring of therapy to the progress of illness and recovery. The ZPM itself has been designed with a modular structure and the ZPM-Oncology serves as a template and use case for the foundation of other ZPMs with medical need in the area of precision medicine. Each ZPM displays an interdisciplinary structure and is organized around the seven core functions: molecular diagnostics, imaging, biobanking, individual therapy, data integration, training and education, and patient participation. At the ZPM-Oncology, patients with advanced malignant tumors for whom approved, or guideline-based therapies are not effective are offered advanced molecular diagnostic tests to find new and translational treatment options. The ZPM-Oncology TUM includes one of the largest Molecular Tumor Boards in Germany bringing together experts from different oncologic and research disciplines. It was the third German ZPM to be certified by the German Cancer Society (DKG) in 2023. The ZPM-Oncology TUM currently advises almost every second patient on a clinical trial and in 2 out of 3 cases recommends a personalized, translational therapeutic option. To extend the crucial precision medicine pioneering work in oncology to other fields with a high medical need and suitable molecular(-genetic) diagnostics, a stepwise expansion beyond the oncologic pilot in the field of inflammation, neurology and cardiology is next intended and based on structural measures.
Further, the Early Clinical Trial Unit (ECTU) of the TUM Hematology/Oncology Department plays a pivotal role in advancing precision medicine by tailoring medical treatments to the unique characteristics of each patient. Comprising a multidisciplinary team of experts, the ECTU conducts early-phase clinical trials that explore innovative therapies incorporating scientifically identified personalized treatment approaches and biomarker development. A prime example of successful integration and application of precision medicine in early clinical investigator-initiated trials at TUM is the COLPRIT trial (EudraCT 2015-001817-28). This prospective study investigates CXCR4-directed radioligand therapy (RLT) and aims to evaluate the efficacy, tolerable dosage, and side effects of [90Y]Pentixather RLT in patients with Multiple Myeloma and advanced Non-Hodgkin Lymphomas. Additionally, the SORATRAM trial (EudraCT 2016-003616-13), which investigates the use of Sorafenib and Trametinib in patients with advanced solid tumors harboring inactivating BRAF mutations, highlights the effective integration of molecular tumor boards (MTBs) and ECTUs within the framework of precision medicine.
In recent years, the Hematology/Oncology Department at TUM has specifically focused on advanced prevention strategies for blood cancer, with a particular focus on clonal hematopoiesis of indeterminate potential (CHIP) as pre-malignant state and pro-inflammatory condition. We are especially interested in CHIP’s impact on human aging, novel immunotherapies like CAR-T, and the development of hematologic and non-malignant diseases. Based on large-scale prospective studies, we identified a high frequency of CHIP in individuals undergoing hip arthroplasty and a new association with autoimmune diseases (AID) and anemia. The unique access to CHIP BM allowed us to unravel intra-individual spatial heterogeneity and lineage-specific expansion patterns of specific ASXL1-CHIP clones including output towards lymphoid cell fractions during hematopoietic differentiation. Our findings, together with the rising evidence that CHIP leads to adverse outcomes in the aging population, led to the establishment of the nationwide first CHIP Clinic at TUM several years ago. To date, we have adopted a multidisciplinary approach in close collaboration with the German Heart Center in Munich. As one of the largest CHIP clinics in Germany, we have extensive access to and demonstrated the capability for large-scale identification of individuals with CHIP across diverse cohorts. Our established German CHIP Registry e.V. (https://www.chip-register.de), which is a web-based nationwide applicable GDPR-compliant health record application including CHIP carrier-portal and -participation, currently includes detailed data of thousands of prospectively monitored CHIP individuals. This registry will facilitate longitudinal studies, improve clinical management strategies for individuals with CHIP throughout Germany and has already led to joint publications. The unique data collection and analyses on demographics, sequential genetic profiles, clinical presentations, and long-term health outcomes related to CHIP will enable us to assess and incorporate novel factors associated with CHIP progression for the development of refined predictive risk models. Clinically validated relevant results will be translated into mechanistic preclinical studies to identify actionable targets for intercepting CHIP before it progresses to a malignant state, ultimately aiming to advance TUM science into medical practice.
Overall, the successful translation of discovery-based science into clinical practice and blood cancer prevention strategies at the Hematology/Oncology Department TUM underscores the dedication of our cancer center to merging scientific excellence with compassionate patient care.
Authors and Affiliations
Department of Medicine III, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
Judith S. Hecker, Anna L. Illert & Florian Bassermann
TranslaTUM, Center of Translational Cancer Research, Technical University of Munich (TUM), Munich, Germany
Judith S. Hecker, Anna L. Illert & Florian Bassermann
Comprehensive Cancer Center Munich-TUM, Chair of Tumor Metabolism, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
Hana Algül & Florian Bassermann
Center of Personalized Medicine (ZPM), School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
Anna L. Illert & Florian Bassermann
Bavarian Center for Cancer Research (BZKF), Partner Site Munich, Munich, Germany
Judith S. Hecker, Anna L. Illert & Florian Bassermann
German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
Judith S. Hecker, Anna L. Illert & Florian Bassermann
Ismaninger Str. 22, 81675, Munich, Germany
Florian Bassermann
- Judith S. HeckerView author publications
You can also search for this author in PubMed Google Scholar
- Hana AlgülView author publications
You can also search for this author in PubMed Google Scholar
- Anna L. IllertView author publications
You can also search for this author in PubMed Google Scholar
- Florian BassermannView author publications
You can also search for this author in PubMed Google Scholar
Contributions
JSH data collection, drafting, editing, finalizing. HA drafting, editing. ALI drafting, editing. FB drafting, editing, finalizing.
Corresponding author
Correspondence to Florian Bassermann.
Competing interests
The authors declare that they have no competing interests.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
Cite this article
Hecker, J.S., Algül, H., Illert, A.L. et al. The Technical University of Munich Cancer Center - elevating cancer treatment through science. Mol Cancer 23, 212 (2024). https://doi.org/10.1186/s12943-024-02127-3
Download citation
Published:
DOI: https://doi.org/10.1186/s12943-024-02127-3
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
- TUM Cancer Center
- CRC/TRR 387 - UbiQancer
- TranslaTUM
- Immunotherapy Program TUM
- Personalized Oncology TUM
- ECTU TUM
- CHIP Clinic TUM
- Comprehensive Cancer Center Munich-TUM (CCCM-TUM)
中文翻译:
慕尼黑工业大学癌症中心 - 通过科学提升癌症治疗水平
慕尼黑工业大学和慕尼黑路德维希马克西米利安大学都是国内和国际一流大学,并在德国国家研究基金会(DFG)资助的卓越计划中被评为“精英大学”。这两个站点都是欧洲领先的癌症研究机构,并在慕尼黑综合癌症中心 (CCCM) 内联手。这使 CCCM 成为致力于推进癌症领域研究和教育卓越的全球领导者。 CCCM 的明确愿景和目标是指导临床试验从开始到完成,专注于最好的研究和科学,以加强生物和技术创新疗法和诊断的发展。辅以双向翻译、概念验证研究和临床研究项目的多学科项目,这些重点领域通过数据管理和人工智能 (AI) 的专用基础设施得到进一步加强。患者参与是 CCCM 联合活动的另一个重点,并通过患者咨询委员会 (PAB) 等新型机构得到加强,该委员会为患者和家属提供倡导,确定新的行动领域,并解决与他们相关的挑战。合作委员会和工作组向 CCCM 提供建议以支持这些努力。此外,CCCM 强烈强调与大学医院以外的肿瘤学家的临床和科学互动。 在多个层面上不断交流有关预防、与癌症相关的身体/心理挑战、癌症医学和治疗方式的最新发展以及外展活动的信息。
慕尼黑工业大学 (TUM) 的综合癌症中心 (CCCM-TUM) 致力于促进癌症医学所有学科和部门之间的合作。作为慕尼黑工业大学癌症中心的重要合作伙伴,CCCM-TUM 在教职员工的总体治理中发挥着关键作用,为利益相关者提供合作并将发现转化为创新的机会。以此身份,它协调与癌症医学相关的所有活动,并倡导众多基础和临床研究人员的利益。
在本文中,我们想重点介绍慕尼黑工业大学的一些具体活动,特别关注血液学/肿瘤学系的临床前和临床结构 (https://med3.mri.tum.de)。因此,该内容并不声称提供了慕尼黑工业大学癌症中心研究活动的完整描述。
从结构上看,TranslaTUM(转化癌症中央研究所:https://www.translatum.tum.de)是一个独特的中央研究机构,毗邻慕尼黑工业大学医院。该倡议致力于促进医学转化研究(图 1)。通过强调各种跨学科方法来应对复杂的医疗挑战,TranslaTUM 寻求加速新型治疗方法的开发,并致力于弥合实验室发现与临床应用之间的差距,促进创新疗法和技术在患者护理中的快速实施。
临床前研究标志着慕尼黑工业大学血液学/肿瘤学系研究理念的基石,直接促进早期化合物/细胞疗法的开发和早期临床试验。我们在此举例说明该部门的两个重点领域:靶向蛋白质降解(TPD)方法和细胞免疫治疗策略。
靶向蛋白质降解(TPD)是一种新颖的治疗方法,专门利用泛素蛋白酶体系统(UPS)的降解性质,并选择性消除细胞内的致病蛋白质。这是通过使用蛋白水解靶向嵌合体 (PROTAC) 和分子胶等分子来实现的,它们有助于目标蛋白与细胞自然降解机制的结合。与仅阻断蛋白质功能的传统抑制剂不同,TPD 会导致目标蛋白质完全降解,从而提供更明确的治疗结果。这种创新策略对于解决涉及以前被传统方法认为“不可成药”的蛋白质的癌症特别有价值。除了 TPD 方法之外,异常的泛素网络通过破坏蛋白质降解和信号传导途径的正常调节,在癌症的发生和进展中发挥着关键作用,也是该研究项目的重点。事实上,UPS 内的失调可能导致致癌蛋白的积累或抑癌蛋白的降解,从而促进不受控制的细胞生长。泛素连接酶 (E3) 和去泛素酶 (DUB) 的突变或改变经常在各种癌症中观察到,导致恶性肿瘤和治疗耐药。这些畸变会影响 DNA 修复、细胞凋亡、细胞周期控制、新陈代谢和免疫逃逸等关键过程,进一步驱动癌症发病机制。针对异常泛素网络的成分为开发旨在恢复正常细胞功能的新型癌症疗法提供了一条有前途的途径。
泛素系统的基于发现的科学概念与专注于 PROTAC 和分子胶家族的早期连接酶/DUB 抑制剂和降解剂的学术化合物开发应用方法相结合,标志着德国研究基金会 (DFG) 资助的合作研究的基石中心 CRC/TRR 387“泛素系统功能化抗癌 - UbiQancer”。这个位于慕尼黑的网络与维尔茨堡大学和法兰克福大学合作,于 2024 年获得资助,汇集了基于泛素的临床医学、癌症生物学、结构生物学、药物化学和计算生物学方面的关键国家专业知识。该结构构成了德国中央网络,以弥合癌症中基于泛素的脆弱性和降解剂技术研究即将实施的差距,并将这些见解应用于早期学术化合物开发。
慕尼黑工业大学血液学/肿瘤学系内广泛的细胞免疫治疗计划涵盖了通过尖端免疫治疗方式在肿瘤治疗方面取得开拓性进展的广泛方法。该计划旨在通过采用创新的治疗策略来完善癌症治疗范式,例如肿瘤浸润淋巴细胞 (TIL)、T 细胞受体 (TCR) 和嵌合抗原受体 (CAR) T 细胞 (CAR-T),这些策略利用免疫系统对抗恶性肿瘤的潜力。该大型计划嵌入在增强研究能力和协作努力的中央结构中,包括巴伐利亚癌症研究中心(BZKF)灯塔“细胞免疫疗法”和其他德国网络,重点关注用于治疗性合成免疫的淋巴细胞工程(LETSimmun CRC/TRR) 338)。具体来说,我们致力于开发细胞工程新技术,利用开创性的基因编辑技术来增强免疫疗法的有效性,同时利用自然杀伤 (NK) 细胞的先天细胞特性。此外,我们的项目重点关注免疫治疗反应的多因素决定因素,包括与骨髓 (BM) 微环境的相互作用、克隆造血的存在以及与肠道微生物组的相关性。此外,我们的临床前研究计划旨在阐明免疫疗法的耐药机制。在这里,我们特别关注通过调节翻译后修饰(特别是泛素化和磷酸化)来增强和恢复关键免疫治疗靶点表达的策略,以防止蛋白质降解。 此外,我们利用这种方法来研究降低肿瘤细胞上免疫细胞抑制配体表达的策略,旨在提高免疫检查点抑制疗法的疗效。我们预计,这些见解以及来自临床前研究的其他见解将为研究者发起的试验(IIT)铺平道路,并将指导未来的细胞免疫治疗策略。
慕尼黑工业大学血液学/肿瘤科致力于提高慕尼黑大都市区肿瘤患者的护理标准,重点是精准医疗和先进的预防策略。这将通过两个关键的临床重点领域来体现:个性化医疗中心和 TUM 的 CHIP 诊所。
慕尼黑工业大学个性化医疗中心 (ZPM) 的成立旨在促进所有医疗保健领域的精准医疗。 ZPM 的目标是通过广泛整合个体因素来优化治疗每位患者,超越疾病的功能诊断。因此,这还包括根据疾病的进展和康复不断调整治疗。 ZPM 本身采用模块化结构设计,ZPM-Oncology 可以作为精准医疗领域具有医疗需求的其他 ZPM 的基础的模板和用例。每个 ZPM 都显示出跨学科结构,并围绕七个核心功能进行组织:分子诊断、成像、生物样本库、个体治疗、数据集成、培训和教育以及患者参与。在 ZPM-Oncology,为经批准或基于指南的治疗无效的晚期恶性肿瘤患者提供先进的分子诊断测试,以寻找新的转化治疗方案。 ZPM-Oncology TUM 包括德国最大的分子肿瘤委员会之一,汇集了来自不同肿瘤学和研究学科的专家。这是 2023 年获得德国癌症协会 (DKG) 认证的第三个德国 ZPM。ZPM-Oncology TUM 目前为几乎每两个患者提供临床试验建议,并在三分之二的病例中推荐个性化的转化治疗方案。为了将肿瘤学领域关键的精准医学开创性工作扩展到具有高医疗需求和合适的分子(遗传)诊断的其他领域,接下来将逐步扩展到炎症、神经病学和心脏病学领域的肿瘤学试点之外,并基于结构措施。
此外,慕尼黑工业大学血液学/肿瘤学系的早期临床试验中心 (ECTU) 通过根据每位患者的独特特征定制医疗方案,在推进精准医疗方面发挥着关键作用。 ECTU 由多学科专家团队组成,开展早期临床试验,探索结合科学确定的个性化治疗方法和生物标志物开发的创新疗法。 COLPRIT 试验 (EudraCT 2015-001817-28) 是 TUM 早期临床研究者发起的试验中成功整合和应用精准医学的一个典型例子。这项前瞻性研究调查了 CXCR4 导向的放射配体治疗 (RLT),旨在评估 [ 90 Y]Pentixather RLT 对多发性骨髓瘤和晚期非霍奇金淋巴瘤患者的疗效、耐受剂量和副作用。此外,SORATRAM 试验 (EudraCT 2016-003616-13) 研究了索拉非尼和 Trametinib 在携带 BRAF 失活突变的晚期实体瘤患者中的使用,强调了分子肿瘤板 (MTB) 和 ECTU 在以下框架内的有效整合:精准医疗。
近年来,慕尼黑工业大学血液学/肿瘤学系特别关注血癌的先进预防策略,特别关注作为癌前状态和促炎症状态的不确定潜力克隆造血(CHIP)。我们对 CHIP 对人类衰老、CAR-T 等新型免疫疗法以及血液和非恶性疾病的发展的影响特别感兴趣。基于大规模前瞻性研究,我们发现接受髋关节置换术的个体发生 CHIP 的频率较高,并且与自身免疫性疾病 (AID) 和贫血存在新的关联。对 CHIP BM 的独特访问使我们能够解开特定 ASXL1-CHIP 克隆的个体内空间异质性和谱系特异性扩展模式,包括造血分化期间向淋巴细胞部分的输出。我们的研究结果,加上越来越多的证据表明 CHIP 会导致老龄化人口的不良后果,促使几年前在慕尼黑工业大学建立了全国首家 CHIP 诊所。迄今为止,我们已与慕尼黑德国心脏中心密切合作,采用多学科方法。作为德国最大的 CHIP 诊所之一,我们拥有广泛的渠道,并展示了大规模识别不同人群中 CHIP 患者的能力。我们建立的德国 CHIP 注册 eV (https://www.chip-register.de) 是一个基于网络的全国性适用的符合 GDPR 的健康记录应用程序,包括 CHIP 载体门户和参与,目前包含数千个的详细数据前瞻性监测 CHIP 个体。 该登记系统将促进纵向研究,改善德国各地 CHIP 患者的临床管理策略,并已导致联合出版物。对与 CHIP 相关的人口统计、连续遗传图谱、临床表现和长期健康结果的独特数据收集和分析将使我们能够评估和纳入与 CHIP 进展相关的新因素,以开发精细的预测风险模型。经临床验证的相关结果将转化为机制临床前研究,以确定在 CHIP 发展为恶性状态之前拦截 CHIP 的可行目标,最终旨在将慕尼黑工业大学的科学推向医疗实践。
总体而言,慕尼黑工业大学血液学/肿瘤学系将基于发现的科学成功转化为临床实践和血癌预防策略,这突显了我们的癌症中心致力于将卓越科学与富有同情心的患者护理相结合的奉献精神。
作者和单位
慕尼黑工业大学(TUM)医学与健康学院医学三系,慕尼黑德国
朱迪思·S·赫克、安娜·L·伊勒特和弗洛里安·巴瑟曼
TranslaTUM,转化癌症研究中心,慕尼黑工业大学 (TUM),慕尼黑德国
朱迪思·S·赫克、安娜·L·伊勒特和弗洛里安·巴瑟曼
慕尼黑-TUM 综合癌症中心,慕尼黑工业大学 (TUM) 医学与健康学院肿瘤代谢主任,德国慕尼黑
哈娜·阿尔古尔和弗洛里安·巴瑟曼
个性化医疗中心 (ZPM),医学与健康学院,慕尼黑工业大学 (TUM),慕尼黑德国
安娜·L·伊勒特和弗洛里安·巴瑟曼
巴伐利亚癌症研究中心 (BZKF),合作伙伴地点慕尼黑,慕尼黑,德国
朱迪思·S·赫克、安娜·L·伊勒特和弗洛里安·巴瑟曼
德国癌症联盟 (DKTK),合作伙伴地点慕尼黑和德国癌症研究中心 (DKFZ),德国海德堡
朱迪思·S·赫克、安娜·L·伊勒特和弗洛里安·巴瑟曼
伊斯马宁格街22, 81675, 慕尼黑, 德国弗洛里安·巴塞尔曼
朱迪思·S·赫克 (Judith S. Hecker)查看作者出版物
您也可以在PubMed中搜索该作者 谷歌学术
Hana Algül查看作者出版物
您也可以在PubMed中搜索该作者 谷歌学术
Anna L. Illert查看作者出版物
您也可以在PubMed中搜索该作者 谷歌学术
Florian Bassermann查看作者出版物
您也可以在PubMed中搜索该作者 谷歌学术
贡献
JSH 数据收集、起草、编辑、定稿。 HA 起草、编辑。 ALI 起草、编辑。 FB 起草、编辑、定稿。
通讯作者
弗洛里安·巴瑟曼的通讯。
利益竞争
作者声明他们没有利益冲突。
出版商备注
施普林格·自然对于已出版的地图和机构隶属关系中的管辖权主张保持中立。
开放获取本文根据 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License 获得许可,该许可允许以任何媒介或格式进行任何非商业使用、共享、分发和复制,只要您给予原作者适当的署名( s) 和来源,提供知识共享许可证的链接,并指出您是否修改了许可材料。根据本许可,您无权共享源自本文或其部分内容的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/。
转载和许可
引用这篇文章
下载引文
分享这篇文章
您与之分享以下链接的任何人都可以阅读此内容:
抱歉,本文目前没有可共享的链接。
由 Springer Nature SharedIt 内容共享计划提供
关键词
- 慕尼黑工业大学癌症中心
- CRC/TRR 387 - UbiQancer
- 翻译大学
慕尼黑工业大学免疫治疗项目
个性化肿瘤学 TUM- 埃克图姆
- 慕尼黑工业大学 CHIP 诊所
慕尼黑-TUM 综合癌症中心 (CCCM-TUM)