Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-27 , DOI: 10.1021/acsnano.4c07677 Chencong Liu, Yuanyuan Wang, Shitao Shi, Yubo Zheng, Zewei Ye, Jiaqi Liao, Qingfeng Sun, Baokang Dang, Xiaoping Shen
ACS Nano ( IF 15.8 ) Pub Date : 2024-09-27 , DOI: 10.1021/acsnano.4c07677 Chencong Liu, Yuanyuan Wang, Shitao Shi, Yubo Zheng, Zewei Ye, Jiaqi Liao, Qingfeng Sun, Baokang Dang, Xiaoping Shen
Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core–sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π–π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.
中文翻译:
用于人工皮肤和生理监测的髓鞘启发水凝胶电极
近年来,基于水凝胶的表皮电极取得了重大进展。然而,适应性、粘附性和导电性等固有限制带来了挑战,从而限制了生理电极界面的灵敏度、信噪比 (SNR) 和稳定性。在这项研究中,我们通过在物理交联聚电解质网络中加入许多互穿的核-护套结构导电纳米纤维,提出了髓鞘启发水凝胶表皮电子学的概念。聚(3,4-乙烯二氧噻吩)包覆的磺化纤维素纳米纤维 (PEDOT:SCNFs) 是通过简单的溶剂催化磺化过程合成的,然后是氧化自聚合和离子液体 (IL) 屏蔽步骤,实现了 42 Ω的低电化学阻抗。复合水凝胶网络内的物理关联包括络合、静电力、氢键、π-π 堆叠、疏水相互作用和弱缠结。这些特性赋予了水凝胶高拉伸性 (770%)、超顺应性、自粘附性(在猪皮上为 28 kPa)和自修复能力。通过模拟 Ranvier 节点在神经系统中的盐化传播效应,仿生水凝胶建立了高保真表皮电子界面,具有低界面接触阻抗、显著提高 SNR (30 dB) 以及大规模传感器阵列集成等优点。这种先进的仿生水凝胶在电子皮肤 (e-skin)、人机界面 (HMI) 和医疗保健评估设备中的应用具有巨大潜力。
更新日期:2024-09-27
中文翻译:
用于人工皮肤和生理监测的髓鞘启发水凝胶电极
近年来,基于水凝胶的表皮电极取得了重大进展。然而,适应性、粘附性和导电性等固有限制带来了挑战,从而限制了生理电极界面的灵敏度、信噪比 (SNR) 和稳定性。在这项研究中,我们通过在物理交联聚电解质网络中加入许多互穿的核-护套结构导电纳米纤维,提出了髓鞘启发水凝胶表皮电子学的概念。聚(3,4-乙烯二氧噻吩)包覆的磺化纤维素纳米纤维 (PEDOT:SCNFs) 是通过简单的溶剂催化磺化过程合成的,然后是氧化自聚合和离子液体 (IL) 屏蔽步骤,实现了 42 Ω的低电化学阻抗。复合水凝胶网络内的物理关联包括络合、静电力、氢键、π-π 堆叠、疏水相互作用和弱缠结。这些特性赋予了水凝胶高拉伸性 (770%)、超顺应性、自粘附性(在猪皮上为 28 kPa)和自修复能力。通过模拟 Ranvier 节点在神经系统中的盐化传播效应,仿生水凝胶建立了高保真表皮电子界面,具有低界面接触阻抗、显著提高 SNR (30 dB) 以及大规模传感器阵列集成等优点。这种先进的仿生水凝胶在电子皮肤 (e-skin)、人机界面 (HMI) 和医疗保健评估设备中的应用具有巨大潜力。