当前位置:
X-MOL 学术
›
J. Non Equilib. Thermodyn.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Novel irreversibility modeling of non-homogeneous charged gas flow by solving Maxwell–Boltzmann PDEs system: irreversibility analysis for multi-component plasma
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2024-09-26 , DOI: 10.1515/jnet-2024-0055 Taha Z. Abdel Wahid, Zaki Mrzog Alaofi
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2024-09-26 , DOI: 10.1515/jnet-2024-0055 Taha Z. Abdel Wahid, Zaki Mrzog Alaofi
A novel modeling and new irreversibility analysis of non-homogeneous charged gas flow is presented as an extension and further development of our previous article [J. Non-equilibrium. Thermodyne. 49 (2024), 1–21]. We study the non-equilibrium irreversible thermodynamics (NIT) properties of the exact solution to the dilute non-homogeneously charged gas problem with unsteady Rayleigh flow. In contrast to previous research, the charged gas is non-homogeneous under the influence of induced electromagnetic forces, the flat plate moving damping with time, and the effect of positive ions is considered, leading to significant advancements in understanding natural plasma dynamics. We are solving eight non-homogeneous partial differential equations (PDE). We used a Laplace transformation technique and small parameters methods. To the best of our knowledge, as two new scientific achievements, we introduced a new mathematical model for a mixture of charged gas to calculate the thermodynamic forces, kinetic coefficients, and fluxes variables, see Appendices. Second, we present a fantastic new technique by a flowchart to identify the equilibrium time of multi-component plasma step-by-step using the velocity distribution function (VDF). We indicate that electrons, which are faster lighter components, reach equilibrium faster than slower heavier components. A standard laboratory argon plasma model is used to apply the results.
中文翻译:
通过求解麦克斯韦-玻尔兹曼偏微分方程组对非均匀带电气流进行新颖的不可逆性建模:多组分等离子体的不可逆性分析
作为我们之前文章 [J.非平衡。热力学。 49(2024),1-21]。我们研究了非稳态瑞利流稀非均匀带电气体问题精确解的非平衡不可逆热力学 (NIT) 性质。与之前的研究相比,带电气体在感应电磁力的影响下是非均匀的,平板随时间移动阻尼,并且考虑了正离子的影响,从而在理解自然等离子体动力学方面取得了重大进展。我们正在求解八个非齐次偏微分方程 (PDE)。我们使用拉普拉斯变换技术和小参数方法。据我们所知,作为两项新的科学成就,我们引入了一种新的带电气体混合物数学模型,用于计算热力学力、动力学系数和通量变量,请参阅附录。其次,我们通过流程图展示了一种奇妙的新技术,使用速度分布函数(VDF)逐步确定多组分等离子体的平衡时间。我们表明,速度较快的较轻成分的电子比速度较慢的较重成分更快达到平衡。使用标准实验室氩等离子体模型来应用结果。
更新日期:2024-09-26
中文翻译:
通过求解麦克斯韦-玻尔兹曼偏微分方程组对非均匀带电气流进行新颖的不可逆性建模:多组分等离子体的不可逆性分析
作为我们之前文章 [J.非平衡。热力学。 49(2024),1-21]。我们研究了非稳态瑞利流稀非均匀带电气体问题精确解的非平衡不可逆热力学 (NIT) 性质。与之前的研究相比,带电气体在感应电磁力的影响下是非均匀的,平板随时间移动阻尼,并且考虑了正离子的影响,从而在理解自然等离子体动力学方面取得了重大进展。我们正在求解八个非齐次偏微分方程 (PDE)。我们使用拉普拉斯变换技术和小参数方法。据我们所知,作为两项新的科学成就,我们引入了一种新的带电气体混合物数学模型,用于计算热力学力、动力学系数和通量变量,请参阅附录。其次,我们通过流程图展示了一种奇妙的新技术,使用速度分布函数(VDF)逐步确定多组分等离子体的平衡时间。我们表明,速度较快的较轻成分的电子比速度较慢的较重成分更快达到平衡。使用标准实验室氩等离子体模型来应用结果。