当前位置:
X-MOL 学术
›
Q. J. Econ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Measuring and Mitigating Racial Disparities in Tax Audits
The Quarterly Journal of Economics ( IF 11.1 ) Pub Date : 2024-09-26 , DOI: 10.1093/qje/qjae027 Hadi Elzayn, Evelyn Smith, Thomas Hertz, Cameron Guage, Arun Ramesh, Robin Fisher, Daniel E Ho, Jacob Goldin
The Quarterly Journal of Economics ( IF 11.1 ) Pub Date : 2024-09-26 , DOI: 10.1093/qje/qjae027 Hadi Elzayn, Evelyn Smith, Thomas Hertz, Cameron Guage, Arun Ramesh, Robin Fisher, Daniel E Ho, Jacob Goldin
Tax authorities around the world rely on audits to detect underreported tax liabilities and to verify that taxpayers qualify for the benefits they claim. We study differences in Internal Revenue Service audit rates between Black and non-Black taxpayers. Because neither we nor the IRS observe taxpayer race, we propose and employ a novel partial identification strategy to estimate these differences. Despite race-blind audit selection, we find that Black taxpayers are audited at 2.9 to 4.7 times the rate of non-Black taxpayers. An important driver of the disparity is differing audit rates by race among taxpayers claiming the Earned Income Tax Credit (EITC). Using counterfactual audit selection models to explore why the disparity arises, we find that maximizing the detection of underreported taxes would not lead to Black EITC claimants being audited at higher rates. Rather, the audit disparity among EITC claimants stems in large part from a policy decision to prioritize detecting overclaims of refundable credits over other forms of noncompliance. Modifying the audit selection algorithm to target total underreported taxes while holding fixed the number of audited EITC claimants would reduce the share of audited taxpayers who are Black, and would lead to more audits focused on accurate reporting of business income and deductions; fewer audits focused on the eligibility of claimed dependents; higher per-audit costs; and more detected noncompliance.
中文翻译:
衡量和减轻税务审计中的种族差异
世界各地的税务机关依靠审计来发现少报的纳税义务,并核实纳税人是否有资格享受他们所声称的福利。我们研究黑人和非黑人纳税人之间国税局审计率的差异。由于我们和国税局都不观察纳税人种族,因此我们提出并采用一种新颖的部分识别策略来估计这些差异。尽管审计选择是种族盲的,但我们发现黑人纳税人接受的审计率是非黑人纳税人的 2.9 至 4.7 倍。造成这种差异的一个重要因素是,申请劳动所得税抵免 (EITC) 的纳税人因种族不同而存在不同的审计率。使用反事实审计选择模型来探讨出现差异的原因,我们发现最大限度地发现漏报税收不会导致黑人 EITC 索赔人受到更高比率的审计。相反,EITC 索赔人之间的审计差异在很大程度上源于一项政策决定,即优先检测可退还信贷的过度索赔,而不是其他形式的违规行为。修改审计选择算法以瞄准漏报税款总额,同时保持经过审计的 EITC 索赔人的数量固定,这将减少经过审计的黑人纳税人的比例,并将导致更多的审计集中于准确报告营业收入和扣除额;针对声称受抚养人的资格的审计较少;每次审计成本较高;以及更多被发现的违规行为。
更新日期:2024-09-26
中文翻译:
衡量和减轻税务审计中的种族差异
世界各地的税务机关依靠审计来发现少报的纳税义务,并核实纳税人是否有资格享受他们所声称的福利。我们研究黑人和非黑人纳税人之间国税局审计率的差异。由于我们和国税局都不观察纳税人种族,因此我们提出并采用一种新颖的部分识别策略来估计这些差异。尽管审计选择是种族盲的,但我们发现黑人纳税人接受的审计率是非黑人纳税人的 2.9 至 4.7 倍。造成这种差异的一个重要因素是,申请劳动所得税抵免 (EITC) 的纳税人因种族不同而存在不同的审计率。使用反事实审计选择模型来探讨出现差异的原因,我们发现最大限度地发现漏报税收不会导致黑人 EITC 索赔人受到更高比率的审计。相反,EITC 索赔人之间的审计差异在很大程度上源于一项政策决定,即优先检测可退还信贷的过度索赔,而不是其他形式的违规行为。修改审计选择算法以瞄准漏报税款总额,同时保持经过审计的 EITC 索赔人的数量固定,这将减少经过审计的黑人纳税人的比例,并将导致更多的审计集中于准确报告营业收入和扣除额;针对声称受抚养人的资格的审计较少;每次审计成本较高;以及更多被发现的违规行为。