当前位置:
X-MOL 学术
›
J. Earthq. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Machine Learning-Based Framework for Estimating Fragility Parameters in RC/MR Frames Considering Seismic, Structural, and Site Attributes
Journal of Earthquake Engineering ( IF 2.5 ) Pub Date : 2024-09-17 , DOI: 10.1080/13632469.2024.2400194 Zohreh Jabari Salmi, Mohammad Iman Khodakarami, Farhad Behnamfar
Journal of Earthquake Engineering ( IF 2.5 ) Pub Date : 2024-09-17 , DOI: 10.1080/13632469.2024.2400194 Zohreh Jabari Salmi, Mohammad Iman Khodakarami, Farhad Behnamfar
This study investigates applying machine learning (ML) algorithms to estimate seismic fragility curves of reinforced concrete moment-resisting frames. The goal is to achieve computationally efficie...
中文翻译:
基于机器学习的框架,用于估计 RC/MR 框架中考虑地震、结构和场地属性的易损性参数
本研究研究应用机器学习(ML)算法来估计钢筋混凝土抗弯框架的地震易损性曲线。目标是实现计算效率...
更新日期:2024-09-17
中文翻译:
基于机器学习的框架,用于估计 RC/MR 框架中考虑地震、结构和场地属性的易损性参数
本研究研究应用机器学习(ML)算法来估计钢筋混凝土抗弯框架的地震易损性曲线。目标是实现计算效率...