当前位置:
X-MOL 学术
›
IEEE Trans. Inform. Forensics Secur.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biometrics-Based Authenticated Key Exchange With Multi-Factor Fuzzy Extractor
IEEE Transactions on Information Forensics and Security ( IF 6.3 ) Pub Date : 2024-09-26 , DOI: 10.1109/tifs.2024.3468624 Hong Yen Tran, Jiankun Hu, Wen Hu
IEEE Transactions on Information Forensics and Security ( IF 6.3 ) Pub Date : 2024-09-26 , DOI: 10.1109/tifs.2024.3468624 Hong Yen Tran, Jiankun Hu, Wen Hu
Existing fuzzy extractor and similar methods provide an effective way for extracting a secret key from a user’s biometric data, but are susceptible to impersonation attack: once a valid biometric sample is captured, the scheme is no longer secure. We propose a novel multi-factor fuzzy extractor that integrates both a user’s secret (e.g., a password) and a user’s biometrics in the generation and reconstruction process of a cryptographic key. We then employ this multi-factor fuzzy extractor to construct personal identity credentials, which can be used in a new multi-factor authenticated key exchange protocol that possesses multiple important features. First, the protocol provides mutual authentication. Second, the user and service provider can authenticate each other without the involvement of the identity authority. Third, the protocol can prevent user impersonation from a compromised identity authority. Finally, even when both a biometric sample and the secret are captured, the user can re-register to create a new credential using a new secret (renewable biometrics-based identity credentials). Most existing works on multi-factor authenticated key exchange only have a subset of these features. We formally prove that the proposed protocol is semantically secure. Our experiments carried out on the finger vein dataset SDUMLA achieved a low equal error rate (EER) of 0.04%, a reasonable computation time of 0.93 seconds for the user and service provider to authenticate and establish a shared session key, and a small communication overhead of 448 bytes.
中文翻译:
基于生物识别的身份验证密钥交换与多因素模糊提取器
现有的模糊提取器和类似方法提供了一种从用户的生物识别数据中提取密钥的有效方法,但容易受到冒充攻击:一旦捕获到有效的生物识别样本,该方案就不再安全。我们提出了一种新的多因素模糊提取器,它在加密密钥的生成和重建过程中集成了用户的秘密(例如密码)和用户的生物识别技术。然后,我们使用这个多因素模糊提取器来构建个人身份凭证,该凭证可用于具有多个重要特征的新型多因素身份验证密钥交换协议。首先,该协议提供相互身份验证。其次,用户和服务提供商可以在没有身份授权机构参与的情况下相互进行身份验证。第三,该协议可以防止来自受损身份颁发机构的用户模拟。最后,即使同时捕获了生物识别样本和密钥,用户也可以重新注册以使用新密钥(基于可更新的生物识别身份凭证)创建新凭证。大多数关于多重身份验证密钥交换的现有工作仅具有这些功能的子集。我们正式证明所提出的协议在语义上是安全的。我们在指静脉数据集 SDUMLA 上进行的实验实现了 0.04% 的低等错误率 (EER),用户和服务提供商验证和建立共享会话密钥的合理计算时间为 0.93 秒,通信开销很小,为 448 字节。
更新日期:2024-09-26
中文翻译:
基于生物识别的身份验证密钥交换与多因素模糊提取器
现有的模糊提取器和类似方法提供了一种从用户的生物识别数据中提取密钥的有效方法,但容易受到冒充攻击:一旦捕获到有效的生物识别样本,该方案就不再安全。我们提出了一种新的多因素模糊提取器,它在加密密钥的生成和重建过程中集成了用户的秘密(例如密码)和用户的生物识别技术。然后,我们使用这个多因素模糊提取器来构建个人身份凭证,该凭证可用于具有多个重要特征的新型多因素身份验证密钥交换协议。首先,该协议提供相互身份验证。其次,用户和服务提供商可以在没有身份授权机构参与的情况下相互进行身份验证。第三,该协议可以防止来自受损身份颁发机构的用户模拟。最后,即使同时捕获了生物识别样本和密钥,用户也可以重新注册以使用新密钥(基于可更新的生物识别身份凭证)创建新凭证。大多数关于多重身份验证密钥交换的现有工作仅具有这些功能的子集。我们正式证明所提出的协议在语义上是安全的。我们在指静脉数据集 SDUMLA 上进行的实验实现了 0.04% 的低等错误率 (EER),用户和服务提供商验证和建立共享会话密钥的合理计算时间为 0.93 秒,通信开销很小,为 448 字节。