当前位置:
X-MOL 学术
›
Med. Image Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Intelligent surgical planning for automatic reconstruction of orbital blowout fracture using a prior adversarial generative network
Medical Image Analysis ( IF 10.7 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.media.2024.103332 Jiangchang Xu, Yining Wei, Shuanglin Jiang, Huifang Zhou, Yinwei Li, Xiaojun Chen
Medical Image Analysis ( IF 10.7 ) Pub Date : 2024-09-04 , DOI: 10.1016/j.media.2024.103332 Jiangchang Xu, Yining Wei, Shuanglin Jiang, Huifang Zhou, Yinwei Li, Xiaojun Chen
Orbital blowout fracture (OBF) is a disease that can result in herniation of orbital soft tissue, enophthalmos, and even severe visual dysfunction. Given the complex and diverse types of orbital wall fractures, reconstructing the orbital wall presents a significant challenge in OBF repair surgery. Accurate surgical planning is crucial in addressing this issue. However, there is currently a lack of efficient and precise surgical planning methods. Therefore, we propose an intelligent surgical planning method for automatic OBF reconstruction based on a prior adversarial generative network (GAN). Firstly, an automatic generation method of symmetric prior anatomical knowledge (SPAK) based on spatial transformation is proposed to guide the reconstruction of fractured orbital wall. Secondly, a reconstruction network based on SPAK-guided GAN is proposed to achieve accurate and automatic reconstruction of fractured orbital wall. Building upon this, a new surgical planning workflow based on the proposed reconstruction network and 3D Slicer software is developed to simplify the operational steps. Finally, the proposed surgical planning method is successfully applied in OBF repair surgery, verifying its reliability. Experimental results demonstrate that the proposed reconstruction network achieves relatively accurate automatic reconstruction of the orbital wall, with an average DSC of 92.35 ± 2.13% and a 95% Hausdorff distance of 0.59 ± 0.23 mm, markedly outperforming the compared state-of-the-art networks. Additionally, the proposed surgical planning workflow reduces the traditional planning time from an average of 25 min and 17.8 s to just 1 min and 35.1 s, greatly enhancing planning efficiency. In the future, the proposed surgical planning method will have good application prospects in OBF repair surgery.
中文翻译:
使用先前的对抗生成网络自动重建眼眶爆裂性骨折的智能手术计划
眼眶爆裂性骨折(OBF)是一种可导致眼眶软组织突出、眼球内陷甚至严重视力障碍的疾病。鉴于眼眶壁骨折的复杂性和多样性,眼眶壁的重建对OBF修复手术提出了重大挑战。准确的手术计划对于解决这个问题至关重要。然而,目前缺乏高效、精准的手术规划方法。因此,我们提出了一种基于先验对抗生成网络(GAN)的自动 OBF 重建的智能手术计划方法。首先,提出一种基于空间变换的对称先验解剖知识(SPAK)自动生成方法来指导骨折眼眶壁的重建。其次,提出了一种基于SPAK引导的GAN的重建网络,以实现骨折眼眶壁的精确自动重建。在此基础上,开发了基于所提出的重建网络和 3D Slicer 软件的新手术规划工作流程,以简化操作步骤。最后,所提出的手术规划方法成功应用于OBF修复手术,验证了其可靠性。实验结果表明,所提出的重建网络实现了相对准确的眼眶壁自动重建,平均DSC为92.35±2.13%,95%Hausdorff距离为0.59±0.23mm,明显优于现有技术网络。此外,所提出的手术计划工作流程将传统计划时间从平均25分钟17.8秒缩短至仅1分钟35.1秒,大大提高了计划效率。 未来,所提出的手术规划方法将在OBF修复手术中具有良好的应用前景。
更新日期:2024-09-04
中文翻译:
使用先前的对抗生成网络自动重建眼眶爆裂性骨折的智能手术计划
眼眶爆裂性骨折(OBF)是一种可导致眼眶软组织突出、眼球内陷甚至严重视力障碍的疾病。鉴于眼眶壁骨折的复杂性和多样性,眼眶壁的重建对OBF修复手术提出了重大挑战。准确的手术计划对于解决这个问题至关重要。然而,目前缺乏高效、精准的手术规划方法。因此,我们提出了一种基于先验对抗生成网络(GAN)的自动 OBF 重建的智能手术计划方法。首先,提出一种基于空间变换的对称先验解剖知识(SPAK)自动生成方法来指导骨折眼眶壁的重建。其次,提出了一种基于SPAK引导的GAN的重建网络,以实现骨折眼眶壁的精确自动重建。在此基础上,开发了基于所提出的重建网络和 3D Slicer 软件的新手术规划工作流程,以简化操作步骤。最后,所提出的手术规划方法成功应用于OBF修复手术,验证了其可靠性。实验结果表明,所提出的重建网络实现了相对准确的眼眶壁自动重建,平均DSC为92.35±2.13%,95%Hausdorff距离为0.59±0.23mm,明显优于现有技术网络。此外,所提出的手术计划工作流程将传统计划时间从平均25分钟17.8秒缩短至仅1分钟35.1秒,大大提高了计划效率。 未来,所提出的手术规划方法将在OBF修复手术中具有良好的应用前景。