Nature Physics ( IF 17.6 ) Pub Date : 2024-09-27 , DOI: 10.1038/s41567-024-02648-0 Tenghua Gao, Philipp Rüßmann, Qianwen Wang, Riko Fukunaga, Hiroki Hayashi, Dongwook Go, Takashi Harumoto, Rong Tu, Song Zhang, Lianmeng Zhang, Yuriy Mokrousov, Ji Shi, Kazuya Ando
Transport of angular momentum is a key concept in condensed-matter physics. In solids, electrons can carry both spin and orbital angular momentum, leading to various applications in spintronics and orbitronics. A key difference between spin and orbital transport lies in their characteristic length scales in ferromagnets in which the dynamic orbital response is significantly long ranged compared with its spin counterpart. However, a comprehensive understanding of the physics behind the long-range nature of the orbital response is lacking. Here we demonstrate that the long-range dynamic orbital response in ferromagnets can be controlled by crystal symmetry. Our results manifest a clear difference in the characteristic length scale of orbital torque generation in atomically ordered and disordered CoPt alloys. This observation indicates that the long-range dynamic orbital response relies on the orbital-dependent energy splittings and hybridizations governed by crystal symmetry, which can be manipulated by atomic arrangements. Our results suggest the possibility of simultaneously controlling dynamic and static magnetic phenomena by manipulating orbital hybridization, which could be tailored for spintronic and orbitronic devices.
中文翻译:
通过晶体对称性控制铁磁体的动态轨道响应
角动量传输是凝聚态物理中的一个关键概念。在固体中,电子可以携带自旋角动量和轨道角动量,从而在自旋电子学和轨道电子学中产生各种应用。自旋和轨道输运之间的一个关键区别在于它们在铁磁体中的特征长度尺度,其中动态轨道响应与其自旋对应物相比显着长范围。然而,缺乏对轨道响应的远程性质背后的物理原理的全面理解。在这里,我们证明铁磁体中的长程动态轨道响应可以通过晶体对称性来控制。我们的结果表明,原子有序和无序 CoPt 合金中轨道扭矩产生的特征长度尺度存在明显差异。这一观察表明,长程动态轨道响应依赖于由晶体对称性控制的轨道相关能量分裂和杂化,这可以通过原子排列来操纵。我们的结果表明通过操纵轨道杂化同时控制动态和静态磁现象的可能性,这可以针对自旋电子和轨道电子器件进行定制。