当前位置:
X-MOL 学术
›
Eng. Geol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fatigue mechanical properties and Kaiser effect characteristics of the saturated weakly cemented sandstone under different loading rate conditions
Engineering Geology ( IF 6.9 ) Pub Date : 2024-09-21 , DOI: 10.1016/j.enggeo.2024.107732 Kui Zhao, Youbing Liu, Daoxue Yang, Bo Li, Zhen Huang, Chongjie Huang, Botan Shen, Xiongdong Lan
Engineering Geology ( IF 6.9 ) Pub Date : 2024-09-21 , DOI: 10.1016/j.enggeo.2024.107732 Kui Zhao, Youbing Liu, Daoxue Yang, Bo Li, Zhen Huang, Chongjie Huang, Botan Shen, Xiongdong Lan
Weakly cemented sandstone (WCS) is a unique rock type widely distributed on the surface. Environmental factors such as groundwater and stress variations easily influence its fatigue mechanical properties and fracture characteristics. To design and evaluate the long-term stability of surrounding rock support in tunnel excavation and underground resource mining projects, investigating the fatigue mechanical properties and acoustic emission (AE) response characteristics of saturated WCS under different loading rates is of great practical and theoretical significance. This study employed experimental techniques such as X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and natural water absorption tests to investigate the mineral composition, pore size, and connectivity characteristics of WCS. The multi-level cyclic loading-unloading tests (MCLU) combined with the AE system were conducted on dry and saturated WCS specimens at different loading rates. The results reveal that the deformation modulus of these specimens initially increases and then decreases under cyclic loading conditions. Water significantly influences the fatigue strength and deformation resistance of sandstone. As the loading rate increases, the range of RA values broadens, accompanied by a marked increase in the number of AE signals with high RA values. Saturated sandstone specimens are more prone to developing macroscopic shear fracture surfaces. Water has a more substantial effect on the stress distribution ranges corresponding to the response of the Kaiser effect in WCS than loading rates. The capacity of the Kaiser effect to indicate the extent of rock damage is intricately linked to the progression of internal micro-cracks. When internal damage surpasses the critical value of the Kaiser effect memory damage, the accelerated propagation of shear cracks becomes pivotal in the internal damage of the sandstone. It seems that the presence of water within the interior of the rock may facilitate the dissolution of K-feldspar in WCS, which could result in the formation of kaolinite, which will be further transformed into illite. The hydration expansion of illite may further exacerbate the deterioration effect of the mechanical properties of WCS.
中文翻译:
不同加载速率条件下饱和弱胶结砂岩的疲劳力学特性及Kaiser效应特征
弱胶结砂岩(WCS)是一种广泛分布在地表的独特岩石类型。地下水、应力变化等环境因素容易影响其疲劳力学性能和断裂特性。为了设计和评估隧道开挖和地下资源开采工程中围岩支护的长期稳定性,研究不同加载速率下饱和WCS的疲劳力学性能和声发射(AE)响应特性具有重要的现实和理论意义。本研究采用 X 射线衍射 (XRD)、核磁共振 (NMR) 和天然吸水测试等实验技术来研究 WCS 的矿物成分、孔径和连通性特征。对干燥和饱和的WCS试件在不同加载速率下进行了结合AE系统的多级循环加卸载试验(MCLU)。结果表明,在循环加载条件下,这些试件的变形模量先增大后减小。水对砂岩的疲劳强度和变形抗力影响显着。随着加载速率的增加,RA 值的范围变宽,同时具有高 RA 值的 AE 信号数量显着增加。饱和砂岩样本更容易形成宏观剪切断裂表面。与加载速率相比,水对与 WCS 中凯泽效应响应相对应的应力分布范围具有更显着的影响。凯撒效应指示岩石损伤程度的能力与内部微裂纹的进展密切相关。 当内部损伤超过凯撒效应记忆损伤的临界值时,剪切裂纹的加速扩展成为砂岩内部损伤的关键。岩石内部水的存在似乎可能促进 WCS 中钾长石的溶解,这可能导致高岭石的形成,高岭石将进一步转化为伊利石。伊利石的水化膨胀可能进一步加剧WCS力学性能的劣化效应。
更新日期:2024-09-21
中文翻译:
不同加载速率条件下饱和弱胶结砂岩的疲劳力学特性及Kaiser效应特征
弱胶结砂岩(WCS)是一种广泛分布在地表的独特岩石类型。地下水、应力变化等环境因素容易影响其疲劳力学性能和断裂特性。为了设计和评估隧道开挖和地下资源开采工程中围岩支护的长期稳定性,研究不同加载速率下饱和WCS的疲劳力学性能和声发射(AE)响应特性具有重要的现实和理论意义。本研究采用 X 射线衍射 (XRD)、核磁共振 (NMR) 和天然吸水测试等实验技术来研究 WCS 的矿物成分、孔径和连通性特征。对干燥和饱和的WCS试件在不同加载速率下进行了结合AE系统的多级循环加卸载试验(MCLU)。结果表明,在循环加载条件下,这些试件的变形模量先增大后减小。水对砂岩的疲劳强度和变形抗力影响显着。随着加载速率的增加,RA 值的范围变宽,同时具有高 RA 值的 AE 信号数量显着增加。饱和砂岩样本更容易形成宏观剪切断裂表面。与加载速率相比,水对与 WCS 中凯泽效应响应相对应的应力分布范围具有更显着的影响。凯撒效应指示岩石损伤程度的能力与内部微裂纹的进展密切相关。 当内部损伤超过凯撒效应记忆损伤的临界值时,剪切裂纹的加速扩展成为砂岩内部损伤的关键。岩石内部水的存在似乎可能促进 WCS 中钾长石的溶解,这可能导致高岭石的形成,高岭石将进一步转化为伊利石。伊利石的水化膨胀可能进一步加剧WCS力学性能的劣化效应。