当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multiple Heterointerfaces and Heterostructure Engineering in MXene@Co–P–S Hybrids Promote High-Performance Sodium-Ion Half/Full Batteries
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-09-26 , DOI: 10.1021/acs.inorgchem.4c02995 Yining Li, Shimei Wu, Zhiting Liu, Wei Yang, Haosen Fan, Yufei Zhang
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-09-26 , DOI: 10.1021/acs.inorgchem.4c02995 Yining Li, Shimei Wu, Zhiting Liu, Wei Yang, Haosen Fan, Yufei Zhang
In this paper, heterogeneous cobalt phosphosulfide (Co4S3/Co2P) nanocrystals anchoring on few-layered MXene nanosheets (MXene@Co4S3/Co2P) were prepared by in situ growth and the subsequent high-temperature phosphorization/sulfidation processes. Thanks to the synergistic effect and the abundant phase interfaces of Co4S3, Co2P, and MXene, the electron transfer and Na+ diffusion processes were greatly accelerated. Meanwhile, the high electrical conductivity of MXene nanosheets and the heterogeneous structure of Co4S3/Co2P effectively avoided the MXene restacking and the agglomeration of phosphosulfide particles, thus mitigating volumetric expansion during charging and discharging. The results show that the MXene@Co4S3/Co2P heterostructure presents good rate capability (251.08 mAh g–1 at 1 A g–1) and excellent cycling stability (198.69 mAh g–1 after 407 cycles at 5 A g–1). Finally, the storage mechanism of Na+ in the heterostructure and the multistep phase transition reaction were determined by ex situ X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS) analyses. This study provides a new perspective on the formation of metal phosphosulfide and MXene hybrids with multiple heterointerfaces as well as demonstrates MXene@Co4S3/Co2P composites as the promising anode material in sodium-ion batteries.
中文翻译:
MXene@Co–P–S 混合材料中的多个异质界面和异质结构工程促进高性能钠离子半/全电池
本文通过原位生长和随后的高温磷化制备了锚定在少层MXene纳米片(MXene@Co 4 S 3 /Co 2 P)上的异质磷硫化钴(Co 4 S 3 /Co 2 P)纳米晶。 /硫化过程。由于Co 4 S 3 、Co 2 P和MXene的协同效应和丰富的相界面,电子转移和Na +扩散过程大大加速。同时,MXene纳米片的高导电性和Co 4 S 3 /Co 2 P的异质结构有效避免了MXene的重新堆积和磷硫化物颗粒的团聚,从而减轻了充放电过程中的体积膨胀。结果表明,MXene@Co 4 S 3 /Co 2 P异质结构具有良好的倍率性能(1 A g –1下为251.08 mAh g –1 )和优异的循环稳定性(5 A g –1下循环407次后为198.69 mAh g –1 ) –1 )。最后,通过非原位X射线衍射(XRD)、电化学阻抗谱(EIS)和X射线光电子能谱(XPS)分析确定了异质结构中Na +的存储机制和多步相变反应。 这项研究为金属磷硫化物和具有多个异质界面的MXene杂化物的形成提供了新的视角,并证明了MXene@Co 4 S 3 /Co 2 P复合材料作为钠离子电池中有前途的负极材料。
更新日期:2024-09-26
中文翻译:
MXene@Co–P–S 混合材料中的多个异质界面和异质结构工程促进高性能钠离子半/全电池
本文通过原位生长和随后的高温磷化制备了锚定在少层MXene纳米片(MXene@Co 4 S 3 /Co 2 P)上的异质磷硫化钴(Co 4 S 3 /Co 2 P)纳米晶。 /硫化过程。由于Co 4 S 3 、Co 2 P和MXene的协同效应和丰富的相界面,电子转移和Na +扩散过程大大加速。同时,MXene纳米片的高导电性和Co 4 S 3 /Co 2 P的异质结构有效避免了MXene的重新堆积和磷硫化物颗粒的团聚,从而减轻了充放电过程中的体积膨胀。结果表明,MXene@Co 4 S 3 /Co 2 P异质结构具有良好的倍率性能(1 A g –1下为251.08 mAh g –1 )和优异的循环稳定性(5 A g –1下循环407次后为198.69 mAh g –1 ) –1 )。最后,通过非原位X射线衍射(XRD)、电化学阻抗谱(EIS)和X射线光电子能谱(XPS)分析确定了异质结构中Na +的存储机制和多步相变反应。 这项研究为金属磷硫化物和具有多个异质界面的MXene杂化物的形成提供了新的视角,并证明了MXene@Co 4 S 3 /Co 2 P复合材料作为钠离子电池中有前途的负极材料。