当前位置: X-MOL 学术J. Netw. Comput. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distributed enhanced multi-objective evolutionary algorithm based on decomposition for cluster analysis in wireless sensor network
Journal of Network and Computer Applications ( IF 7.7 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.jnca.2024.104032
Anita Panwar, Satyasai Jagannath Nanda

Conventional clustering algorithms do not recognize patterns and structures with contradicting objectives in large, distributed datasets. Distributed clustering leverages rapid processing capabilities to allow multiple nodes to work together. This paper proposes a Distributed clustering based on Multiobjective Evolutionary Algorithm by Decomposition (D-MOEA/d) to solve various multiobjective optimization problems in wireless sensor networks (WSNs). In MOEA/d, a multiobjective optimization problem decomposes into several scalar optimization subproblems, each focusing on a distinct objective. Each subproblem is expressed as a clustering problem that uses local data to perform distributed clustering. The proposed method has been extended to achieve improved accuracy in less time by using a smaller feature subset with less redundancy. The Distributed Enhanced MOEA/d (DE-MOEA/d) avoids local optima by achieving diversity in the population using fuzzy-based nearest neighbor selection, sparse population initialization, and evolved mutation operator. This integration improves the accuracy of the clustering process at WSN nodes, ensuring the attainment of well-balanced solutions across multiple optimization criteria in the distributed environment. Average Euclidean and total symmetrical deviations are the two cost functions used to minimize while clustering on the MOEA/d framework. Six real-life WSN datasets are used to assess the performance of the proposed technique: (1) the Delhi air pollution dataset, (2) the Canada weather station dataset, (3) the Thames River water quality dataset, (4) the Narragansett Bay water quality dataset, (5) the Cook Agricultural land dataset and 6) Gordon Soil dataset. The simulation results of both proposed algorithms are compared with Multiobjective distributed particle swarm optimization (DMOPSO) and Distributed K-means (DK-Means). The proposed algorithm DE-MOEA/d performs better in terms of the Silhouette index (SI), Dunn index (DI), Davies–Bouldin index (DBI), and Kruskal–Wallis (KW) statistical test.

中文翻译:


基于分解的分布式增强多目标进化算法在无线传感器网络中进行聚类分析



传统的聚类算法无法识别大型分布式数据集中目标相互矛盾的模式和结构。分布式集群利用快速处理功能允许多个节点协同工作。该文提出了一种基于分解多目标进化算法 (D-MOEA/d) 的分布式聚类,以解决无线传感器网络 (WSN) 中的各种多目标优化问题。在 MOEA/d 中,一个多目标优化问题分解为几个标量优化子问题,每个子问题都专注于一个不同的目标。每个子问题都表示为一个集群问题,它使用本地数据来执行分布式集群。所提出的方法已经扩展,通过使用具有较少冗余的较小特征子集,在更短的时间内实现更高的精度。分布式增强 MOEA/d (DE-MOEA/d) 通过使用基于模糊的最近邻选择、稀疏种群初始化和进化突变运算符来实现种群的多样性,从而避免了局部最优。这种集成提高了 WSN 节点集群过程的准确性,确保在分布式环境中跨多个优化标准实现均衡的解决方案。平均欧几里得偏差和总对称偏差是在 MOEA/d 框架上聚类时用于最小化的两个成本函数。六个真实的 WSN 数据集用于评估所提出的技术的性能:(1) 德里空气污染数据集,(2) 加拿大气象站数据集,(3) 泰晤士河水质数据集,(4) 纳拉甘西特湾水质数据集,(5) 库克农业用地数据集和 6) 戈登土壤数据集。 将两种算法的仿真结果与多目标分布式粒子群优化 (DMOPSO) 和分布式 K-means (DK-Means) 进行了比较。所提算法 DE-MOEA/d 在 Silhouette 指数 (SI)、Dunn 指数 (DI)、Davies-Bouldin 指数 (DBI) 和 Kruskal-Wallis (KW) 统计检验方面表现较好。
更新日期:2024-09-19
down
wechat
bug