当前位置:
X-MOL 学术
›
Nanophotonics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrated optical probing scheme enabled by localized-interference metasurface for chip-scale atomic magnetometer
Nanophotonics ( IF 6.5 ) Pub Date : 2024-09-25 , DOI: 10.1515/nanoph-2024-0296 Jinsheng Hu, Zihua Liang, Peng Zhou, Lu Liu, Gen Hu, Mao Ye
Nanophotonics ( IF 6.5 ) Pub Date : 2024-09-25 , DOI: 10.1515/nanoph-2024-0296 Jinsheng Hu, Zihua Liang, Peng Zhou, Lu Liu, Gen Hu, Mao Ye
Emerging miniaturized atomic sensors such as optically pumped magnetometers (OPMs) have attracted widespread interest due to their application in high-spatial-resolution biomagnetism imaging. While optical probing systems in conventional OPMs require bulk optical devices including linear polarizers and lenses for polarization conversion and wavefront shaping, which are challenging for chip-scale integration. In this study, an integrated optical probing scheme based on localized-interference metasurface for chip-scale OPM is developed. Our monolithic metasurface allows tailorable linear polarization conversion and wavefront manipulation. Two silicon-based metasurfaces namely meta-polarizer and meta-polarizer-lens are fabricated and characterized, with maximum transmission efficiency and extinction ratio (ER) of 86.29 % and 14.2 dB for the meta-polarizer as well as focusing efficiency and ER of 72.79 % and 6.4 dB for the meta-polarizer-lens, respectively. A miniaturized vapor cell with 4 × 4 × 4 mm3 dimension containing 87 Rb and N2 is combined with the meta-polarizer to construct a compact zero-field resonance OPM for proof of concept. The sensitivity of this sensor reaches approximately 9 fT/Hz1/2 with a dynamic range near zero magnetic field of about ±2.3 nT. This study provides a promising solution for chip-scale optical probing, which holds potential for the development of chip-integrated OPMs as well as other advanced atomic devices where the integration of optical probing system is expected.
中文翻译:
通过局域干涉超表面实现芯片级原子磁力计的集成光学探测方案
新兴的微型原子传感器,例如光泵磁力计(OPM),由于其在高空间分辨率生物磁成像中的应用而引起了广泛的兴趣。虽然传统 OPM 中的光学探测系统需要大量光学器件,包括用于偏振转换和波前整形的线性偏振器和透镜,这对于芯片级集成来说是一个挑战。在这项研究中,开发了一种基于局域干涉超表面的芯片级 OPM 集成光学探测方案。我们的整体超表面允许可定制的线性偏振转换和波前操纵。制造并表征了两种硅基超表面,即元偏振器和元偏振器透镜,元偏振器的最大传输效率和消光比 (ER) 为 86.29 % 和 14.2 dB,聚焦效率和 ER 为 72.79超偏振透镜分别为 % 和 6.4 dB。包含 87Rb 和 N2 的 4 × 4 × 4 mm3 尺寸的微型蒸汽室与元偏振器相结合,构建了一个紧凑的零场共振 OPM,用于概念验证。该传感器的灵敏度达到约 9 fT/Hz1/2,接近零磁场的动态范围约为 ±2.3 nT。这项研究为芯片级光学探测提供了一种有前途的解决方案,它为芯片集成OPM以及其他预计集成光学探测系统的先进原子器件的开发提供了潜力。
更新日期:2024-09-25
中文翻译:
通过局域干涉超表面实现芯片级原子磁力计的集成光学探测方案
新兴的微型原子传感器,例如光泵磁力计(OPM),由于其在高空间分辨率生物磁成像中的应用而引起了广泛的兴趣。虽然传统 OPM 中的光学探测系统需要大量光学器件,包括用于偏振转换和波前整形的线性偏振器和透镜,这对于芯片级集成来说是一个挑战。在这项研究中,开发了一种基于局域干涉超表面的芯片级 OPM 集成光学探测方案。我们的整体超表面允许可定制的线性偏振转换和波前操纵。制造并表征了两种硅基超表面,即元偏振器和元偏振器透镜,元偏振器的最大传输效率和消光比 (ER) 为 86.29 % 和 14.2 dB,聚焦效率和 ER 为 72.79超偏振透镜分别为 % 和 6.4 dB。包含 87Rb 和 N2 的 4 × 4 × 4 mm3 尺寸的微型蒸汽室与元偏振器相结合,构建了一个紧凑的零场共振 OPM,用于概念验证。该传感器的灵敏度达到约 9 fT/Hz1/2,接近零磁场的动态范围约为 ±2.3 nT。这项研究为芯片级光学探测提供了一种有前途的解决方案,它为芯片集成OPM以及其他预计集成光学探测系统的先进原子器件的开发提供了潜力。