当前位置:
X-MOL 学术
›
Journal of Advertising
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Computational Methods for Improving the Observability of Platform-Based Advertising
Journal of Advertising ( IF 5.4 ) Pub Date : 2024-09-11 , DOI: 10.1080/00913367.2024.2394156 Daniel Angus, Lauren Hayden, Abdul Karim Obeid, Xue Ying Tan, Nicholas Carah, Jean Burgess, Christine Parker, Mark Andrejevic, Robbie Fordyce, Loup Cellard, Julian Bagnara
Journal of Advertising ( IF 5.4 ) Pub Date : 2024-09-11 , DOI: 10.1080/00913367.2024.2394156 Daniel Angus, Lauren Hayden, Abdul Karim Obeid, Xue Ying Tan, Nicholas Carah, Jean Burgess, Christine Parker, Mark Andrejevic, Robbie Fordyce, Loup Cellard, Julian Bagnara
The advertising ecosystem has been progressively reshaped by computational advertising models facilitated and controlled by digital media platforms. Meta and Alphabet, two of the dominant players i...
中文翻译:
提高平台广告可观测性的计算方法
数字媒体平台促进和控制的计算广告模型逐渐重塑了广告生态系统。 Meta 和 Alphabet,两个主导玩家......
更新日期:2024-09-11
中文翻译:
提高平台广告可观测性的计算方法
数字媒体平台促进和控制的计算广告模型逐渐重塑了广告生态系统。 Meta 和 Alphabet,两个主导玩家......