当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wirelessly steerable bioelectronic neuromuscular robots adapting neurocardiac junctions
Science Robotics ( IF 26.1 ) Pub Date : 2024-09-25 , DOI: 10.1126/scirobotics.ado0051
Hiroyuki Tetsuka, Samuele Gobbi, Takaaki Hatanaka, Lorenzo Pirrami, Su Ryon Shin

Biological motions of native muscle tissues rely on the nervous system to interface movement with the surrounding environment. The neural innervation of muscles, crucial for regulating movement, is the fundamental infrastructure for swiftly responding to changes in body tissue requirements. This study introduces a bioelectronic neuromuscular robot integrated with the motor nervous system through electrical synapses to evoke cardiac muscle activities and steer robotic motion. Serving as an artificial brain and wirelessly regulating selective neural activation to initiate robot fin motion, a wireless frequency multiplexing bioelectronic device is used to control the robot. Frequency multiplexing bioelectronics enables the control of the robot locomotion speed and direction by modulating the flapping of the robot fins through the wireless motor innervation of cardiac muscles. The robots demonstrated an average locomotion speed of ~0.52 ± 0.22 millimeters per second, fin-flapping frequency up to 2.0 hertz, and turning locomotion path curvature of ~0.11 ± 0.04 radians per millimeter. These systems will contribute to the expansion of biohybrid machines into the brain-to-motor frontier for developing autonomous biohybrid systems capable of advanced adaptive motor control and learning.

中文翻译:


无线可操纵的生物电子神经肌肉机器人适应神经心脏接头



天然肌肉组织的生物运动依赖于神经系统将运动与周围环境联系起来。肌肉的神经支配对于调节运动至关重要,是快速响应身体组织需求变化的基本基础设施。本研究介绍了一种生物电子神经肌肉机器人,通过电突触与运动神经系统集成,以诱发心肌活动并引导机器人运动。作为人工大脑,无线调节选择性神经激活以启动机器人的鳍运动,使用无线频率多路复用生物电子设备来控制机器人。频率多路复用生物电子学通过心肌的无线电机神经支配来调节机器人鳍的拍打,从而控制机器人的运动速度和方向。机器人的平均运动速度为每秒 ~0.52 ± 0.22 毫米,拍打鳍的频率高达 2.0 赫兹,转动运动路径曲率为每毫米 ~0.11 ± 0.04 弧度。这些系统将有助于将生物混合动力机器扩展到大脑到运动的前沿领域,以开发能够进行高级自适应运动控制和学习的自主生物混合动力系统。
更新日期:2024-09-25
down
wechat
bug