当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2024-09-26 , DOI: 10.1038/s41565-024-01793-0
Kai Wu, Zhengli Dou, Shibo Deng, Die Wu, Bin Zhang, Haobo Yang, Runlai Li, Chuxin Lei, Yongzheng Zhang, Qiang Fu, Guihua Yu

Electronic systems and devices operating at significant power levels demand sophisticated solutions for heat dissipation. Although materials with high thermal conductivity hold promise for exceptional thermal transport across nano- and microscale interfaces under ideal conditions, their performance often falls short by several orders of magnitude in the complex thermal interfaces typical of real-world applications. This study introduces mechanochemistry-mediated colloidal liquid metals composed of Galinstan and aluminium nitride to bridge the practice–theory disparity. These colloids demonstrate thermal resistances of between 0.42 and 0.86 mm2 K W−1 within actual thermal interfaces, outperforming leading thermal conductors by over an order of magnitude. This superior performance is attributed to the gradient heterointerface with efficient thermal transport across liquid–solid interfaces and the notable colloidal thixotropy. In practical devices, experimental results demonstrate their capacity to extract 2,760 W of heat from a 16 cm2 thermal source when coupled with microchannel cooling, and can facilitate a 65% reduction in pump electricity consumption. This advancement in thermal interface technology offers a promising solution for efficient and sustainable cooling of devices operating at kilowatt levels.



中文翻译:


用于千瓦级电子设备冷却的机械化学介导的胶体液态金属



在高功率水平下运行的电子系统和设备需要复杂的散热解决方案。尽管高导热率材料有望在理想条件下在纳米和微米尺度界面上实现出色的热传输,但在实际应用中典型的复杂热界面中,它们的性能通常会达不到几个数量级。本研究引入了由加林斯坦和氮化铝组成的机械化学介导的胶体液态金属,以弥合实践与理论的差距。这些胶体在实际热界面内表现出 0.42 至 0.86 mm 2 KW -1的热阻,优于领先的热导体一个数量级以上。这种优越的性能归因于梯度异质界面,具有跨液固界面的有效热传输和显着的胶体触变性。在实际设备中,实验结果表明,当与微通道冷却相结合时,它们能够从 16 cm 2热源中提取 2,760 W 的热量,并且可以使泵的电力消耗减少 65%。热界面技术的这一进步为千瓦级运行设备的高效和可持续冷却提供了一种有前景的解决方案。

更新日期:2024-09-26
down
wechat
bug