当前位置:
X-MOL 学术
›
J. Am. Stat. Assoc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Neyman-Pearson Multi-class Classification via Cost-sensitive Learning
Journal of the American Statistical Association ( IF 3.0 ) Pub Date : 2024-09-20 , DOI: 10.1080/01621459.2024.2402567 Ye Tian, Yang Feng
Journal of the American Statistical Association ( IF 3.0 ) Pub Date : 2024-09-20 , DOI: 10.1080/01621459.2024.2402567 Ye Tian, Yang Feng
Most existing classification methods aim to minimize the overall misclassification error rate. However, in applications such as loan default prediction, different types of errors can have varying c...
中文翻译:
通过成本敏感学习的 Neyman-Pearson 多类分类
大多数现有的分类方法旨在最小化总体错误分类错误率。然而,在贷款违约预测等应用中,不同类型的错误可能有不同的原因...
更新日期:2024-09-25
中文翻译:
通过成本敏感学习的 Neyman-Pearson 多类分类
大多数现有的分类方法旨在最小化总体错误分类错误率。然而,在贷款违约预测等应用中,不同类型的错误可能有不同的原因...