当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Universal Neural Network Potential-Driven Molecular Dynamics Study of CO2/O2 Evolution at the Ethylene Carbonate/Charged–Electrode Interface
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-09-24 , DOI: 10.1021/acsami.4c03866
Motoki Horibe, Naoto Tanibata, Hayami Takeda, Masanobu Nakayama

Long-term durability and safety are required to develop Li-ion batteries that can operate at high voltages. However, side reactions, including the release of O2 from the electrode and CO2 from the organic electrolyte, occur at the positive-electrode/electrolyte interface during charging at high voltages. In this study, universal neural network potential (UNNP)-driven molecular dynamics (MD) calculations are used to investigate the mechanism of the reaction between LixCoO2 (0 ≤ x ≤ 1) or LixNiO2 (0 ≤ x ≤ 1), as the positive-electrode material, and an ethylene-carbonate-based electrolyte, with a solid–liquid interface composed of ∼1700 atoms. Molecular CO2 and O2 evolve from the partially or fully Li-deintercalated LixNiO2, while no gas–evolution reactions are observed for LixCoO2. Hence, compared LixNiO2, the LiCoO2 electrode is more stable toward the decomposition of ethylene carbonate in the charged state. The decomposition reactions at the solid–liquid interface during charging are also analyzed using a NN force field. This study provides a robust approach involving MD simulations using UNNP to better understand the side reactions in electrochemical devices, which can guide manufacturers in selecting appropriate materials.

中文翻译:


通用神经网络 碳乙烯酯/带电电极界面处 CO2/O2 析出的势驱动分子动力学研究



开发可在高压下运行的锂离子电池需要长期的耐用性和安全性。然而,在高压充电期间,正极/电解质界面会发生副反应,包括从电极释放 O2 和从有机电解质中释放 CO2。在本研究中,通用神经网络电位 (UNNP) 驱动的分子动力学 (MD) 计算用于研究作为正极材料的 LixCoO2 (0 ≤ x ≤ 1) 或 LixNiO2 (0 ≤ x ≤ 1) 与具有由 ∼1700 个原子组成的固液界面的乙烯-碳酸酯基电解质之间的反应机理。分子 CO2 和 O2 从部分或完全锂脱嵌的 LixNiO2 演化而来,而 LixCoO2 没有观察到析气反应。因此,与 LixNiO2 相比,LiCoO2 电极在带电状态下对碳酸乙烯酯的分解更稳定。还使用 NN 力场分析了充电过程中固液界面处的分解反应。本研究提供了一种强大的方法,涉及使用 UNNP 进行 MD 模拟,以更好地了解电化学器件中的副反应,从而指导制造商选择合适的材料。
更新日期:2024-09-24
down
wechat
bug