Nature Energy ( IF 49.7 ) Pub Date : 2024-09-24 , DOI: 10.1038/s41560-024-01645-0 Zhanyou Xu, Ruihu Lu, Zih-Yi Lin, Weixing Wu, Hsin-Jung Tsai, Qian Lu, Yuguang C. Li, Sung-Fu Hung, Chunshan Song, Jimmy C. Yu, Ziyun Wang, Ying Wang
The electrochemical CO2 reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO2 to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO2-to-CH4 conversion with Faradaic efficiency of (52 ± 4)% and turnover frequency of 23,060 h−1 at 250 mA cm−2. Our mechanistic studies suggest that the CO2 reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO2–*COOH–*C(OH)2–*COH to produce CH4 due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm−2) for 10 h is able to produce CH4 at a rate of 23.0 mmol h−1.
中文翻译:
三唑分子催化剂将CO2电还原为甲烷
针对增值燃料和原料的电化学CO 2还原反应通常依赖于金属基催化剂。有机分子催化剂比金属催化剂具有更灵敏的可调性,但仍无法在工业相关电流密度下长期运行将CO 2催化为碳氢化合物,且催化机理仍不清楚。在这里,我们报道了基于 3,5-二氨基-1,2,4-三唑的膜电极组件用于 CO 2转化为 CH 4 ,法拉第效率为 (52 ± 4)%,周转频率为 23,060 h -1 (在 250 ℃) mA cm -2 。我们的机理研究表明,3,5-二氨基-1,2,4-三唑电极处的 CO 2还原通过中间体 *CO 2 –*COOH–*C(OH) 2 –*COH 进行,从而产生 CH 4空间分布的活性位点和分子轨道的合适能级。中试系统在10 A(电流密度=123 mA cm -2 )的总电流下运行10 h能够以23.0 mmol h -1的速率产生CH 4 。