当前位置: X-MOL 学术Nat. Chem. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Partitioning of a 2-bit hash function across 66 communicating cells
Nature Chemical Biology ( IF 12.9 ) Pub Date : 2024-09-24 , DOI: 10.1038/s41589-024-01730-1
Jai P. Padmakumar, Jessica J. Sun, William Cho, Yangruirui Zhou, Christopher Krenz, Woo Zhong Han, Douglas Densmore, Eduardo D. Sontag, Christopher A. Voigt

Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. Here, we report design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated using a 2-bit version of the MD5 hashing algorithm, which is an early predecessor to the cryptographic functions underlying cryptocurrency. One iteration requires 110 logic gates, which were partitioned across 66 Escherichia coli strains, requiring the introduction of a total of 1.1 Mb of recombinant DNA into their genomes. The strains were individually experimentally verified to integrate their assigned input signals, process this information correctly and propagate the result to the cell in the next layer. This work demonstrates the potential to obtain programable control of multicellular biological processes.



中文翻译:


跨 66 个通信单元的 2 位哈希函数分区



通过单独执行简单操作的通信单元可以实现强大的分布式计算。在这里,我们报告了设计软件,该软件可以在细胞之间划分大型遗传电路以及遗传部分,以在其基因组中实现子电路。这些工具是使用 MD5 哈希算法的 2 位版本进行演示的,该算法是加密货币底层加密函数的早期前身。一次迭代需要 110 个逻辑门,这些逻辑门被划分为 66 个大肠杆菌菌株,需要将总共 1.1 Mb 的重组 DNA 引入其基因组中。这些菌株经过单独的实验验证,可以整合分配的输入信号,正确处理该信息并将结果传播到下一层的细胞。这项工作展示了获得多细胞生物过程的可编程控制的潜力。

更新日期:2024-09-27
down
wechat
bug