Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-throughput selection of sperm with improved DNA integrity and rapidly progressive motility using a butterfly-shaped chip compared to the swim-up method
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-09-24 , DOI: 10.1039/d4lc00506f Ali Sharafatdoust Asl, Mohammad Zabetian Targhi, Soroush Zeaei, Iman Halvaei, Reza Nosrati
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-09-24 , DOI: 10.1039/d4lc00506f Ali Sharafatdoust Asl, Mohammad Zabetian Targhi, Soroush Zeaei, Iman Halvaei, Reza Nosrati
Microfluidics provides unique opportunities for the high throughput selection of motile sperm with improved DNA integrity for assisted reproductive technologies (ARTs). Here, through a parametric study on dimensions and geometrical angles, a butterfly-shaped chip (BSC) is presented to isolate sperm with high progressive motility and intact DNA at a separation rate of 1125 sperm per minute. Using finite element simulations, the flow field and shear rates in the device were optimized to leverage the inherent motility characteristics of sperm for maximum selection throughput. The device incorporates a triple selection mechanism in series, initially activating sperm rheotaxis by rotation against the semen flow, penetrating the counter buffer flow and swimming against the direction of the buffer flow, leaving dead cells and debris behind, and subsequently leveraging boundary-following behavior to direct progressively motile sperm to swim along the walls and reach the device outlet. The device selects over 4.1 million sperm per mL within 20 minutes, with 29.2%, 68.2%, and 57.3% improvement in total motility, DNA integrity, and velocity parameter (VCL), as compared with the conventional swim-up method, respectively. Overall, the performance of the device to separate sperm with approximately 95.9% total motility, 97.8% viability, and 96.6% DNA integrity at high concentrations demonstrates its potential for enhancing the efficiency of conventional treatment methods.
中文翻译:
与游动法相比,使用蝴蝶形芯片对精子进行高通量选择,具有更好的 DNA 完整性和快速进展的运动能力
微流体技术为高通量选择运动精子提供了独特的机会,同时提高了辅助生殖技术 (ART) 的 DNA 完整性。在这里,通过对尺寸和几何角度的参数研究,提出了一种蝴蝶形芯片 (BSC),以每分钟 1125 个精子的分离速率分离具有高进行性运动的精子和完整的 DNA。使用有限元模拟,优化了设备中的流场和剪切速率,以利用精子固有的运动特性实现最大的选择通量。该设备串联了三重选择机制,最初通过逆着精液流旋转来激活精子变变性,穿透反向缓冲流并逆缓冲流方向游泳,留下死细胞和碎屑,然后利用边界跟随行为引导逐渐运动的精子沿着壁游动并到达设备出口。该设备在 20 分钟内每 mL 选择超过 410 万个精子,与传统的游升方法相比,总运动、DNA 完整性和速度参数 (VCL) 分别提高了 29.2%、68.2% 和 57.3%。总体而言,该装置在高浓度下以约 95.9% 的总活力、97.8% 的活力和 96.6% 的 DNA 完整性分离精子的性能表明其具有提高传统治疗方法效率的潜力。
更新日期:2024-09-24
中文翻译:
与游动法相比,使用蝴蝶形芯片对精子进行高通量选择,具有更好的 DNA 完整性和快速进展的运动能力
微流体技术为高通量选择运动精子提供了独特的机会,同时提高了辅助生殖技术 (ART) 的 DNA 完整性。在这里,通过对尺寸和几何角度的参数研究,提出了一种蝴蝶形芯片 (BSC),以每分钟 1125 个精子的分离速率分离具有高进行性运动的精子和完整的 DNA。使用有限元模拟,优化了设备中的流场和剪切速率,以利用精子固有的运动特性实现最大的选择通量。该设备串联了三重选择机制,最初通过逆着精液流旋转来激活精子变变性,穿透反向缓冲流并逆缓冲流方向游泳,留下死细胞和碎屑,然后利用边界跟随行为引导逐渐运动的精子沿着壁游动并到达设备出口。该设备在 20 分钟内每 mL 选择超过 410 万个精子,与传统的游升方法相比,总运动、DNA 完整性和速度参数 (VCL) 分别提高了 29.2%、68.2% 和 57.3%。总体而言,该装置在高浓度下以约 95.9% 的总活力、97.8% 的活力和 96.6% 的 DNA 完整性分离精子的性能表明其具有提高传统治疗方法效率的潜力。