当前位置:
X-MOL 学术
›
Chem. Soc. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Carbon encapsulated nanoparticles: materials science and energy applications
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-09-24 , DOI: 10.1039/d3cs01122d Kun Guo, Lipiao Bao, Zhixin Yu, Xing Lu
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2024-09-24 , DOI: 10.1039/d3cs01122d Kun Guo, Lipiao Bao, Zhixin Yu, Xing Lu
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity–stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core–shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
中文翻译:
碳封装纳米颗粒:材料科学和能源应用
电化学能量转换和存储的技术实施需要获得高性能的电催化剂和电极。碳包埋纳米颗粒因其独特的优势而成为一种令人兴奋的选择,可实现高水平的活性-稳定性平衡。对这种独特类型材料的日益关注部分归因于在高能条件下碳化无处不在的有机物种的直接原理。此外,按需前驱体不仅为将掺杂剂和表面官能团引入碳壳铺平了道路,而且为产生多样化的金属基纳米颗粒核心铺平了道路。通过控制合成参数,碳壳和金属核心在结构、成分和尺寸方面都得到了轻松的设计。除了碳封装提供的多种易于理解的优势,例如改进的团聚、腐蚀、抗氧化和抗粉碎性以及电荷传导外,潜在的核壳协同相互作用还导致两种组件的电子结构的微调。这些特性共同促进了这些纳米结构作为新型电催化剂和电极的新兴能源应用。因此,迫切需要进行系统和全面的综述,以总结最近的进展并激发这一快速发展的研究领域的进一步努力。
更新日期:2024-09-24
中文翻译:
碳封装纳米颗粒:材料科学和能源应用
电化学能量转换和存储的技术实施需要获得高性能的电催化剂和电极。碳包埋纳米颗粒因其独特的优势而成为一种令人兴奋的选择,可实现高水平的活性-稳定性平衡。对这种独特类型材料的日益关注部分归因于在高能条件下碳化无处不在的有机物种的直接原理。此外,按需前驱体不仅为将掺杂剂和表面官能团引入碳壳铺平了道路,而且为产生多样化的金属基纳米颗粒核心铺平了道路。通过控制合成参数,碳壳和金属核心在结构、成分和尺寸方面都得到了轻松的设计。除了碳封装提供的多种易于理解的优势,例如改进的团聚、腐蚀、抗氧化和抗粉碎性以及电荷传导外,潜在的核壳协同相互作用还导致两种组件的电子结构的微调。这些特性共同促进了这些纳米结构作为新型电催化剂和电极的新兴能源应用。因此,迫切需要进行系统和全面的综述,以总结最近的进展并激发这一快速发展的研究领域的进一步努力。