当前位置:
X-MOL 学术
›
Int. J. Appl. Earth Obs. Geoinf.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Continuous change detection outperforms traditional post-classification change detection for long-term monitoring of wetlands
International Journal of Applied Earth Observation and Geoinformation ( IF 7.6 ) Pub Date : 2024-09-06 , DOI: 10.1016/j.jag.2024.104142 Quentin Demarquet, Sébastien Rapinel, Olivier Gore, Simon Dufour, Laurence Hubert-Moy
International Journal of Applied Earth Observation and Geoinformation ( IF 7.6 ) Pub Date : 2024-09-06 , DOI: 10.1016/j.jag.2024.104142 Quentin Demarquet, Sébastien Rapinel, Olivier Gore, Simon Dufour, Laurence Hubert-Moy
Accurate long-term monitoring of wetlands using satellite archives is crucial for effective conservation. While new methods based on temporal profile classification have been useful for long-term monitoring of wetlands, their advantages over traditional classification methods have not yet been demonstrated. This study aimed to compare continuous change detection (using the continuous change detection and classification (CCDC) algorithm) to traditional post-classification change detection for monitoring wetland changes between 1984 and 2022 in a temperate coastal marsh (Marais Poitevin, France) from the Landsat archive. The reference dataset was collected mainly from field observations and used to train and test a random forest classifier. The accuracy of the resulting change map was then assessed for both methods using validation points collected via visual interpretation of historical aerial photographs and Landsat temporal profiles. The change map derived from CCDC had much higher unbiased overall accuracy (0.86 ± 0.02) than that derived from post-classification change detection (0.51 ± 0.03). In addition, wetland loss was much higher than wetland gain (18 % and 2 % of the area, respectively) and was due mainly to conversion of grassland to cropland and urbanization. The study demonstrated that, unlike traditional post-classification change detection, continuous change detection provides maps of wetland changes sufficiently accurate for operational use by managers. The study also confirmed the ongoing impact of agricultural intensification and artificialization on wetland degradation in Europe.
中文翻译:
对于湿地的长期监测,连续变化检测优于传统的分类后变化检测
利用卫星档案对湿地进行准确的长期监测对于有效的保护至关重要。虽然基于时间剖面分类的新方法可用于湿地的长期监测,但其相对于传统分类方法的优势尚未得到证明。本研究旨在将连续变化检测(使用连续变化检测和分类 (CCDC) 算法)与传统的分类后变化检测进行比较,以监测 1984 年至 2022 年间来自 Landsat 的温带沿海沼泽(法国 Marais Poitevin)的湿地变化档案。参考数据集主要来自现场观察,用于训练和测试随机森林分类器。然后使用通过历史航空照片和陆地卫星时间剖面的视觉解释收集的验证点来评估这两种方法所得到的变化图的准确性。从 CCDC 得出的变化图的无偏总体准确度 (0.86 ± 0.02) 比分类后变化检测得出的变化图 (0.51 ± 0.03) 高得多。此外,湿地损失远高于湿地增加(分别占面积的18%和2%),这主要是由于草地转耕地和城市化造成的。研究表明,与传统的分类后变化检测不同,连续变化检测可以提供足够准确的湿地变化地图,供管理者操作使用。该研究还证实了农业集约化和人工化对欧洲湿地退化的持续影响。
更新日期:2024-09-06
中文翻译:
对于湿地的长期监测,连续变化检测优于传统的分类后变化检测
利用卫星档案对湿地进行准确的长期监测对于有效的保护至关重要。虽然基于时间剖面分类的新方法可用于湿地的长期监测,但其相对于传统分类方法的优势尚未得到证明。本研究旨在将连续变化检测(使用连续变化检测和分类 (CCDC) 算法)与传统的分类后变化检测进行比较,以监测 1984 年至 2022 年间来自 Landsat 的温带沿海沼泽(法国 Marais Poitevin)的湿地变化档案。参考数据集主要来自现场观察,用于训练和测试随机森林分类器。然后使用通过历史航空照片和陆地卫星时间剖面的视觉解释收集的验证点来评估这两种方法所得到的变化图的准确性。从 CCDC 得出的变化图的无偏总体准确度 (0.86 ± 0.02) 比分类后变化检测得出的变化图 (0.51 ± 0.03) 高得多。此外,湿地损失远高于湿地增加(分别占面积的18%和2%),这主要是由于草地转耕地和城市化造成的。研究表明,与传统的分类后变化检测不同,连续变化检测可以提供足够准确的湿地变化地图,供管理者操作使用。该研究还证实了农业集约化和人工化对欧洲湿地退化的持续影响。