当前位置: X-MOL 学术Phys. Rev. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solving multipole challenges in the GW100 benchmark enables precise low-scaling GW calculations
Physical Review B ( IF 3.2 ) Pub Date : 2024-09-23 , DOI: 10.1103/physrevb.110.125146
Mia Schambeck, Dorothea Golze, Jan Wilhelm

The GW approximation is a widely used method for computing electron addition and removal energies of molecules and solids. The computational effort of conventional GW algorithms increases as O(N4) with the system size N, hindering the application of GW to large and complex systems. Low-scaling GW algorithms are currently very actively developed. Benchmark studies at the single-shot G0W0 level indicate excellent numerical precision for frontier quasiparticle energies, with mean absolute deviations <10 meV between low-scaling and standard implementations for the widely used GW100 test set. A notable challenge for low-scaling GW algorithms remains in achieving high precision for five molecules within the GW100 test set, namely O3, BeO, MgO, BN, and CuCN, for which the deviations are in the range of several hundred meV at the G0W0 level. This is because of a spurious transfer of spectral weight from the quasiparticle to the satellite spectrum in G0W0 calculations, resulting in multipole features in the self-energy and spectral function, which low-scaling algorithms fail to describe. We show in this paper that including eigenvalue self-consistency in the Green's function (evGW0) achieves a proper separation between satellite and quasiparticle peak, leading to a single solution of the quasiparticle equation with spectral weight close to one. evGW0 quasiparticles energies from low-scaling GW closely align with reference calculations; the mean absolute error is only 12 meV for the five molecules. We thus demonstrate that low-scaling GW with self-consistency in G is well suited for computing frontier quasiparticle energies.

中文翻译:


解决 GW100 基准中的多极挑战可实现精确的低规模 GW 计算



GW 近似是计算分子和固体的电子添加和去除能量的广泛使用的方法。传统方法的计算量 GW 算法增加 O(N4) 与系统尺寸 N , 阻碍了应用 GW 大型且复杂的系统。低规模 GW 目前算法的开发非常活跃。单次基准研究 G0W0 水平表明前沿准粒子能量具有出色的数值精度,具有平均绝对偏差 <10 广泛使用的低规模和标准实现之间的 meV GW100 测试集。低规模化的一个显着挑战 GW 算法仍然在实现五个分子的高精度 GW100 测试集,即 O3, BeO, MgO, BN , 和 CuCN ,其偏差在数百 meV 范围内 G0W0 等级。这是因为光谱权重从准粒子到卫星光谱的虚假转移 G0W0 计算,导致自能和谱函数中的多极特征,这是低尺度算法无法描述的。我们在本文中表明,在 G 雷恩函数 ( evGW0 )实现了卫星峰和准粒子峰之间的适当分离,导致准粒子方程的单一解,其谱权重接近于 1。 evGW0 来自低尺度的准粒子能量 GW 与参考计算紧密一致;五个分子的平均绝对误差仅为 12 meV。因此,我们证明低尺度 GW G 中具有自洽性,非常适合计算前沿准粒子能量。
更新日期:2024-09-23
down
wechat
bug