Environmental Chemistry Letters ( IF 15.0 ) Pub Date : 2024-09-21 , DOI: 10.1007/s10311-024-01781-9 Sulakshana Shenoy, Chitiphon Chuaicham, Karthikeyan Sekar, Keiko Sasaki
Emergence of antibiotic-resistant bacteria from overuse of antibiotics is a significant threat to human health. Photocatalysis utilizing semiconductors like graphitic carbon nitride (g-C3N4) is cost-effective for antibiotic degradation, however its efficiency is limited by rapid charge carrier recombination. This can be mitigated by forming heterojunctions with compatible semiconductors. Metal oxides, commonly employed for this purpose, are typically deposited on g-C3N4 surfaces, and often agglomerate, resulting in uneven distribution and reduced number of active-sites. Here we present a facile approach for in situ polymerization of g-C3N4 sheets onto bimetallic oxide surfaces, facilitating their seamless integration. CoNiO2 was utilized as substrate for growth of g-C3N4, which improved crystallinity and surface area of g-C3N4-CoNiO2 composite. Optimized g-C3N4-CoNiO2-3% achieved a tetracycline degradation efficiency of 95.6%, markedly exceeding 61.3% degradation observed with pristine g-C3N4. Extended X-ray absorption fine structure spectroscopy confirmed synergistic interaction between CoNiO2 and N-coordinating sites of g-C3N4 by interfacial Ni–N2 bond, enhancing electron transport. This interaction is further evidenced by energy-resolved distribution of electron trap patterns from reversed double-beam photoacoustic spectroscopy, which reveal that while g-C3N4 displays significant electron trap density peaks around 2.7–2.9 eV. The g-C3N4-CoNiO2 enhances this density, indicating formation of an electrical interface heterojunction that improves electron and hole migration across interfacial boundary. Electron spin resonance measurements confirmed that superoxide anion radicals and holes were main active species in promoting tetracycline degradation. Integration of g-C3N4 with bimetallic oxides enhances antibiotic degradation efficiency, presenting a promising and impactful strategy for environmental remediation.
中文翻译:
双金属氧化物上的无缝氮化碳生长用于抗生素残留降解
过度使用抗生素而产生的耐药细菌对人类健康构成重大威胁。利用石墨氮化碳(gC 3 N 4 )等半导体的光催化对于抗生素降解来说具有成本效益,但其效率受到快速载流子重组的限制。这可以通过与兼容的半导体形成异质结来缓解。通常用于此目的的金属氧化物通常沉积在gC 3 N 4表面上,并且经常聚集,导致不均匀分布和活性位点数量减少。在这里,我们提出了一种将 gC 3 N 4片原位聚合到双金属氧化物表面的简便方法,促进它们的无缝集成。利用CoNiO 2作为gC 3 N 4生长的基质,提高了gC 3 N 4 -CoNiO 2复合材料的结晶度和表面积。优化后的gC 3 N 4 -CoNiO 2 -3%的四环素降解效率达到95.6%,明显超过原始gC 3 N 4观察到的61.3%的降解率。扩展的X射线吸收精细结构光谱证实了CoNiO 2和gC 3 N 4的N配位点之间通过界面Ni-N 2键的协同相互作用,增强了电子传输。 反向双束光声光谱的电子陷阱图案的能量分辨分布进一步证明了这种相互作用,表明 gC 3 N 4在 2.7-2.9 eV 附近显示出显着的电子陷阱密度峰值。 gC 3 N 4 -CoNiO 2增强了该密度,表明形成了电界面异质结,改善了电子和空穴跨界面边界的迁移。电子自旋共振测量证实超氧阴离子自由基和空穴是促进四环素降解的主要活性物质。 gC 3 N 4与双金属氧化物的整合提高了抗生素的降解效率,为环境修复提供了一种有前途且有效的策略。