Nature Physics ( IF 17.6 ) Pub Date : 2024-09-20 , DOI: 10.1038/s41567-024-02638-2 Shraddha Anand, Conor E. Bradley, Ryan White, Vikram Ramesh, Kevin Singh, Hannes Bernien
Large-scale Rydberg atom arrays are used for highly coherent analogue quantum simulations and for digital quantum computations. However, advanced quantum protocols, such as quantum error correction, require midcircuit qubit operations, including the replenishment, reset and read-out of a subset of qubits. A compelling strategy for unlocking these capabilities is a dual-species architecture in which a second atomic species is controlled independently and entangled with the first through Rydberg interactions. Here, we realize a dual-species Rydberg array consisting of rubidium and caesium atoms and explore regimes of interactions and dynamics not accessible in single-species architectures. We achieve enhanced interspecies interactions by electrically tuning the Rydberg states close to a Förster resonance. In this regime, we demonstrate an interspecies Rydberg blockade and implement a quantum state transfer from one species to another. We then generate a Bell state between Rb and Cs hyperfine qubits through an interspecies controlled-phase gate. Finally, we combine interspecies entanglement with a native midcircuit read-out to achieve quantum non-demolition measurements.
中文翻译:
双物种里德伯阵列
大规模里德堡原子阵列用于高度相干的模拟量子模拟和数字量子计算。然而,先进的量子协议,例如量子纠错,需要中电路量子位操作,包括量子位子集的补充、重置和读出。解锁这些功能的一个引人注目的策略是双物种架构,其中第二个原子物种被独立控制,并通过里德伯相互作用与第一个原子物种纠缠在一起。在这里,我们实现了由铷和铯原子组成的双物种里德伯阵列,并探索了单物种结构中无法实现的相互作用和动力学机制。我们通过电调节里德堡态接近福斯特共振来增强种间相互作用。在这种情况下,我们演示了种间里德伯封锁并实现了从一个物种到另一个物种的量子态转移。然后,我们通过种间控制相位门在 Rb 和 Cs 超精细量子位之间生成贝尔态。最后,我们将种间纠缠与本机中电路读出相结合,以实现量子非破坏测量。