当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Knockout of phosphatidate phosphohydrolase genes confers broad-spectrum disease resistance in plants
Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-09-22 , DOI: 10.1111/pbi.14477
Qiuwen Gong, Gan Sha, Xinyu Han, Zhenhua Guo, Lei Yang, Ting Chen, Wei Yang, Ronglei Tan, Meng Liu, Fengdie Xia, Guang Chen, Yufei Li, Xin Shen, Kabin Xie, Guangqin Cai, Honghong Hu, Jie Luo, Qiang Li, Guotian Li

Phosphatidic acid (PA) is considered a second messenger that interacts with protein kinases, phosphatases and NADPH oxidases (Kong et al., 2024), amplifying the signal to initiate plant defence responses (Li and Wang, 2019). In rice, mutation of RBL1 causes the accumulation of PA, enhancing multipathogen resistance (Sha et al., 2023). In our previous study, we attempted to rescue rbl1 mutant by overexpressing phosphatidate phosphohydrolase (PAH) genes. However, overexpression of PAH2 reduced the PA level but did not affect the disease resistance of rbl1, which prompted us to test the role of PA and PAHs in rice immunity in the wild-type (WT) background. Here, we identified that knockout of PAHs caused PA accumulation and enhanced multipathogen resistance in rice and Arabidopsis.

Phylogenetic analyses reveal that PAHs are highly conserved in plants. Rice PAHs contain conserved NLIP and LNS2 signature motifs (Figure 1a). PAH1 and PAH2 were transcribed in all rice tissues examined, with the highest level in the leaf (Figure 1b). PAH-GFP signals predominantly co-localized with the endoplasmic reticulum (ER) marker HDEL1 (Figure 1c). The yeast pah1 mutant is lethal at 37 °C. We transformed rice PAH1 and PAH2 genes into the WT yeast strain, respectively, and knocked out the yeast endogenous PAH1 gene. The rice PAH complementation strains grew well on the induction medium YPGal but not on the non-inducing medium YPD at 37 °C, indicating that rice PAH1 and PAH2 function as PA phosphohydrolases in yeast (Figure 1d).

Details are in the caption following the image
Figure 1
Open in figure viewerPowerPoint
Knockout of the phosphohydrolase (PAH) genes confers broad-spectrum disease resistance in rice and Arabidopsis. (a) Phylogenetic analyses of PAH homologs. (b) qRT-PCR assays. (c) subcellular localization assays. Bar = 10 μm. (d) Yeast mutant complementation assays. CP1 and CP2 are the yeast pah1 strains expressing rice PAH1 and PAH2, respectively. (e) Genome editing of rice PAHs. (f) ROS assays. Infection assays with Magnaporthe oryzae (g) and Xoo (h). Bars = 1 cm. (i) 9-week-old rice plants. Bar = 15 cm. (j) Salicylic acid levels. (k) Arabidopsis plants at the flowering stage. Bar = 10 cm. Infected Arabidopsis leaves (l) and lesion areas (m). Bar = 1 cm. (n) Immunoblotting analyses. (o) Differentially expressed genes (DEGs) in rice and Arabidopsis pah1pah2 mutants. (p) Gene ontology enrichment analyses of DEGs in (o). (q) Hierarchical clustering analyses. (r) Heatmap of hormone-related genes. (s) PAHs in metabolism, growth and immunity. Four biologically independent repeats for each line. Different letters were calculated using Duncan's new multiple-range test. n = number of biologically independent repeats.

To investigate the functions of rice PAHs, we genome-edited PAHs by targeting their first exons and obtained pah single mutants (Figure 1e). Since all mutations in pah1 and pah2 led to loss-of-function and no off-targets were observed, we crossed pah1-1 and pah2-1 and created the pah1pah2 double mutant (Figures S1 and S2). We next tested ROS production in rice pah plants. The pah1pah2 leaves exhibited a robust ROS burst when challenged with chitin. The total photon counts, denoting the ROS level, showed an obvious increase in pah1pah2 (Figure 1f). When infected with rice blast fungus Magnaporthe oryzae, the lesion area of pah1pah2 was much smaller than other lines and only 46.1% of the WT (Figure 1g). We subsequently tested the disease resistance of rice pah1pah2 lines with the rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Similarly, the lesion length was much shorter in pah1pah2 (1.51 cm) compared with the WT (9.40 cm) as well as the pah1-1 (7.02 cm) and pah2-1 (6.64 cm) (Figure 1h). In summary, both fungal and bacterial infection assays demonstrate enhanced resistance of pah1pah2. Besides, pah1pah2 exhibited some growth inhibition, and the plant height of pah1pah2 was 77.8% of the WT (Figures 1i, S1 and S3). Salicylic acid (SA) plays key roles in plant defence. The SA level increased 1.39-fold in pah1pah2 compared with the WT (Figure 1j).

To investigate whether the role of the PAH genes in immunity is conserved, we obtained Arabidopsis pah mutants (Eastmond et al., 2010), and the pah1pah2 seedlings were shorter than the WT (Col-0) (Figure 1k). Infection with Botrytis cinerea, pah1pah2 plants developed smaller lesions, a 28.3% reduction than the WT. Similarly, when inoculated with Phytophthora capsici, the lesion area of pah1pah2 (11.0 mm2) was only 15.7% of the WT (70.4 mm2), and smaller lesion areas were also shown in pah1 and pah2 (Figure 1l,m). We further examined the levels of phosphorylated MAPKs (pMAPKs). Under flg22 and chitin treatments, the levels of pMAPKs were significantly higher in the Arabidopsis pah1pah2 mutants as well as pah2 than that in the WT (Figure 1n). The results are consistent with increased ROS levels in rice pah1pah2 , which indicates that increased PA at the plasma membrane by knockout of the ER-localized PAHs ultimately enhances plant immune responses in the plasma membrane.

To investigate PAH-mediated regulation of gene transcription and metabolism, we performed RNA-seq and lipidomics analyses. PR genes and FLS2 were upregulated in rice pah1pah2 (Figure 1o). Furthermore, Gene Ontology (GO) enrichment analyses of differentially expressed genes (DEGs) between WT and pah1pah2 plants showed that ‘response to lipid’, ‘defense response’ and ‘defense response to fungus/bacterium’ were enriched (Figure 1p), which are consistent with the enhanced disease resistance of pah1pah2. Then using the hierarchical clustering analyses, three clusters were identified in Arabidopsis and rice (Figure 1q). In the ‘genes upregulated in pah1pah2’ cluster, the expression levels of many hormone-related genes that are involved in JA, ET, SA and IAA were simultaneously upregulated in pah1pah2 lines (Figure 1r), indicating that these plant hormones are likely involved in resistance and growth of pah1pah2 lines. Knockout of PAHs resulted in the increase of PA and decrease of DAG in rice pah1pah2 (Figure 1s). Additionally, immunity-related genes, Chia4a, NPR3, RBOHE, JAZ9 and ERF, and genes negatively regulating plant growth, including SAUR, were upregulated in pah1pah2 mutants (Figure 1s). Overexpression of the SAUR genes inhibited the biosynthesis of plant growth hormones, some of which were upregulated in pah1pah2, thus partially explaining the growth defects of pah1pah2. In summary, knockout of PAH genes alters phospholipid metabolism in plants, and accumulated PA activates the expression of immunity-related genes, but negatively regulates plant growth.

In conclusion, knockout of both PAH genes enhances plant resistance but inhibits plant growth, an immunity-growth tradeoff. Previously, we used genome editing to break this tradeoff in RBL1 and generated alleles that balance growth and immunity (Sha et al., 2023). Moreover, uORF insertion into the promoter to manipulate protein translation, pathogen-induced silencing of PAHs and optimal natural PAH alleles are options to engineer plant PAHs for multipathogen resistance without yield penalty (Xiong et al., 2022; Zhou et al., 2018). The PA metabolism-related genes PAHs are highly conserved in plants, and the role of PAHs in multipathogen resistance in other crops is worthy of further investigation.



中文翻译:


磷酸盐磷酸水解酶基因的敲除赋予植物广谱抗病性



磷脂酸 (PA) 被认为是与蛋白激酶、磷酸酶和 NADPH 氧化酶相互作用的第二信使(Kong等 人2024 年),放大信号以启动植物防御反应(Li 和 Wang,2019 年)。 在水稻中,RBL1 的突变导致 PA 的积累,从而增强多病原体耐药性(Sha et al., 2023)。在我们之前的研究中,我们试图通过过表达磷酸盐磷酸水解酶 (PAH) 基因来挽救 rbl1 突变体。然而,PAH2 的过表达降低了 PA 水平,但不影响 rbl1 的抗病性,这促使我们在野生型 (WT) 背景下测试 PA 和 PAHs 在水稻免疫中的作用。在这里,我们发现 PAHs 的敲除导致水稻和拟南芥的 PA 积累并增强多病原体耐药性。


系统发育分析表明,PAHs 在植物中高度保守。水稻 PAH 包含保守的 NLIP 和 LNS2 特征基序(图 1a)。PAH1PAH2 在所有检查的水稻组织中转录,其中叶子中的水平最高(图 1b)。PAH-GFP 信号主要与内质网 (ER) 标志物 HDEL1 共定位(图 1c)。酵母 pah1 突变体在 37 °C 时是致命的。 我们将水稻 PAH1PAH2 基因分别转化到 WT 酵母菌株中,并敲除酵母内源性 PAH1 基因。水稻 PAH 互补菌株在 37 °C 的诱导培养基 YPGal 上生长良好,但在非诱导培养基 YPD 上生长良好,表明水稻 PAH1 和 PAH2 在酵母中起 PA 磷酸水解酶的作用(图 1d)。

Details are in the caption following the image
 图 1

在图窗查看器PowerPoint 中打开

磷酸水解酶 (PAH) 基因的敲除赋予水稻和拟南芥广谱抗病性。(a) PAH 同源物的系统发育分析。(b) qRT-PCR 检测。(c) 亚细胞定位测定。棒 = 10 μm。(d) 酵母突变体互补测定。CP1 和 CP2 是分别表达水稻 PAH1PAH2 的酵母 PAH1 菌株。(e) 水稻 PAH 的基因组编辑。(f) ROS 测定。用 Magnaporthe oryzae (g) 和 Xoo (h) 进行感染测定。条形 = 1 厘米。(i) 9 周龄的水稻植株。巴 = 15 厘米。(j) 水杨酸水平。(k) 开花期的拟南芥植物。棒 = 10 厘米。感染的拟南芥叶 (l) 和病变区域 (m)。棒 = 1 cm。(n) 免疫印迹分析。(o) 水稻和拟南芥 pah1pah2 突变体中的差异表达基因 (DEG)。(p) (o) 中 DEGs 的基因本体富集分析。(q) 分层聚类分析。(r) 激素相关基因的热图。(s) 新陈代谢、生长和免疫中的 PAHs。每行有四次生物学独立的重复。使用 Duncan 的新多范围检验计算不同的字母。n = 生物学独立重复次数。


为了研究水稻 PAHs 的功能,我们通过靶向其第一个外显子对 PAHs 进行基因组编辑,并获得 pah 单突变体 (图 1e)。由于 pah1pah2 的所有突变都导致功能丧失并且没有观察到脱靶,因此我们将 pah1-1pah2-1 杂交并产生 pah1pah2 双突变体(图 S1 和 S2)。接下来,我们测试了稻树的 ROS 生产。当受到几丁质攻击时,pah1pah2 叶子表现出强大的 ROS 爆发。表示 ROS 水平的总光子计数显示 pah1pah2 明显增加(图 1f)。当感染稻瘟病菌 Magnaporthe oryzae 时,pah1pah2 的病变面积远小于其他品系,仅为 WT 的 46.1%(图 1g)。随后,我们测试了水稻 pah1pah2 品系对水稻细菌性枯萎病病原体米黄单胞菌 pv 的抗病性。oryzaeXoo).同样,与 WT (9.40 cm) 以及 pah1-1 (7.02 cm) 和 pah2-1 (6.64 cm) 相比,pah1pah2 (1.51 cm) 的病变长度要短得多(图 1h)。总之,真菌和细菌感染测定都表明 pah1pah2 的耐药性增强。此外,pah1pah2 表现出一定的生长抑制作用,pah1pah2 的株高为 WT 的 77.8% (图 1i 、 S1 和 S3)。水杨酸 (SA) 在植物防御中起关键作用。与 WT 相比,pah1pah2 的 SA 水平增加了 1.39 倍(图 1j)。


为了研究 PAH 基因在免疫中的作用是否保守,我们获得了拟南芥 pah 突变体 (Eastmond et al., 2010),并且 pah1pah 2 幼苗比 WT (Col-0) 短(图 1k)。灰葡萄孢菌 (Botrytis cinerea) 感染,pah1pah2 植物出现更小的病灶,比 WT 减少 28.3%。同样,当接种辣椒疫霉时,pah1pah2 (11.0 mm2) 的病变面积仅为 WT (70.4 mm2) 的 15.7%,并且在 pah1pah2 中也显示出较小的病变面积(图 1l,m)。我们进一步检测了磷酸化 MAPKs (pMAPKs) 的水平。在 flg22 和几丁质处理下,拟南芥 pah1pah2 突变体和 pah2 中的 pMAPK 水平显著高于 WT 中(图 1n)。结果与水稻 pah1pah2 中 ROS 水平的增加一致,这表明通过敲除 ER 定位的 PAH 增加的质膜 PA 最终会增强质膜中的植物免疫反应。


为了研究 PAH 介导的基因转录和代谢调控,我们进行了 RNA-seq 和脂质组学分析。PR 基因和 FLS2 在水稻 pah1pah2 中上调 (图 1o)。此外,WT 和 pah1pah2 植物之间差异表达基因 (DEG) 的基因本体论 (GO) 富集分析表明,“对脂质的反应”、“防御反应”和“对真菌/细菌的防御反应”富集(图 1p),这与 pah1pah2 增强的抗病性一致。然后使用分层聚类分析,在拟南芥和水稻中鉴定出三个聚类(图 1q)。在“pah1pah2 中上调的基因”簇中,许多参与 JA、ET、SA 和 IAA 的激素相关基因的表达水平在 pah1pah2 系中同时上调(图 1r),表明这些植物激素可能参与 pah1pah2 系的抗性和生长。敲除 PAHs 导致水稻 pah1pah2 中 PA 的增加和 DAG 的降低(图 1s)。此外,免疫相关基因 Chia4aNPR3RBOHEJAZ9ERF 以及负向调节植物生长的基因 (包括 SAUR)pah1pah 2 突变体中上调(图 1s)。SAUR 基因的过表达抑制了植物生长激素的生物合成,其中一些在 pah1pah2 中上调,从而部分解释了 pah1pah2 的生长缺陷。 综上所述,PAH 基因的敲除会改变植物体内的磷脂代谢,积累的 PA 会激活免疫相关基因的表达,但会对植物生长产生负向调节。


总之,敲除两个 PAH 基因会增强植物抗性,但会抑制植物生长,这是一种免疫-生长权衡。以前,我们使用基因组编辑来打破 RBL1 中的这种权衡,并生成平衡生长和免疫的等位基因(Sha et al., 2023)。此外,将 uORF 插入启动子以操纵蛋白质翻译、病原体诱导的 PAH 沉默和最佳天然 PAH 等位基因是设计植物 PAH以实现多病原体抗性而不会造成产量损失的选择(Xiong等人 2022 年;周等 人2018 年)。PA 代谢相关基因 PAHs 在植物中高度保守,PAHs 在其他作物多病原体抗性中的作用值得进一步研究。

更新日期:2024-09-22
down
wechat
bug