当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A benchmark dataset and workflow for landslide susceptibility zonation
Earth-Science Reviews ( IF 10.8 ) Pub Date : 2024-09-11 , DOI: 10.1016/j.earscirev.2024.104927
Massimiliano Alvioli, Marco Loche, Liesbet Jacobs, Carlos H. Grohmann, Minu Treesa Abraham, Kunal Gupta, Neelima Satyam, Gianvito Scaringi, Txomin Bornaetxea, Mauro Rossi, Ivan Marchesini, Luigi Lombardo, Mateo Moreno, Stefan Steger, Corrado A.S. Camera, Greta Bajni, Guruh Samodra, Erwin Eko Wahyudi, Nanang Susyanto, Marko Sinčić, Sanja Bernat Gazibara, Flavius Sirbu, Jewgenij Torizin, Nick Schüßler, Benjamin B. Mirus, Jacob B. Woodard, Héctor Aguilera, Jhonatan Rivera-Rivera

Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is a relevant tool for mitigating the impact of landslides worldwide. As such, it is the subject of countless scientific studies. Many methods exist for generating a susceptibility map, mostly falling under the definition of statistical or machine learning. These models try to solve a classification problem: given a collection of spatial variables, and their combination associated with landslide presence or absence, a model should be trained, tested to reproduce the target outcome, and eventually applied to unseen data.

中文翻译:


山体滑坡易发性分区的基准数据集和工作流



山体滑坡易感性显示了特定地理区域内发生山体滑坡的空间可能性,是减轻全球山体滑坡影响的相关工具。因此,它是无数科学研究的主题。有许多方法可以生成敏感性图,其中大多数都属于统计或机器学习的定义。这些模型试图解决分类问题:给定一组空间变量,以及它们与山体滑坡存在或不存在相关的组合,应该训练、测试模型以重现目标结果,并最终应用于看不见的数据。
更新日期:2024-09-11
down
wechat
bug