当前位置:
X-MOL 学术
›
Energ. Mater. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Chemical reaction mechanisms and models of energetic materials: A perspective
Energetic Materials Frontiers ( IF 3.3 ) Pub Date : 2024-09-10 , DOI: 10.1016/j.enmf.2024.09.003 Li Meng, Qing-guan Song, Chuang Yao, Lei Zhang, Si-ping Pang
Energetic Materials Frontiers ( IF 3.3 ) Pub Date : 2024-09-10 , DOI: 10.1016/j.enmf.2024.09.003 Li Meng, Qing-guan Song, Chuang Yao, Lei Zhang, Si-ping Pang
Energetic materials (EMs) are a kind of metastable functional materials with certain potential barriers, overcoming which can quickly release the energy stored in EMs. A thorough understanding of reaction mechanisms and accurate quantification of reaction rates are fundamental issues for optimizing energy output, ensuring hazard mitigation, and assessing the safety levels of EMs. This perspective provides an overview of research progress in chemical reaction mechanisms and models, with a particular emphasis on organic EMs and reactive metals. Organic EMs are mainly composed of carbon, hydrogen, nitrogen, and oxygen elements, enabling supersonic and self-sustaining detonation reactions capable of significant energy output. The incorporation of reactive metals like aluminum, magnesium, and boron has been recently found to augment the combustion heat and explosion temperature of EM formulations, sparking heightened research interest. This perspective first presents both EMs’ reaction mechanisms revealed via multiscale simulations and experimental methods, including thermal decomposition, shock initiation, and post combustion. Then, quantitatively characterized expressions of the physical models derived from the revealed mechanisms, including mathematical expressions like elementary and phenomenological reaction kinetic models, and emerging data-driven machine learning models, are reviewed. Finally, the view of the application, existing problems, and further development directions are outlined.
中文翻译:
含能材料的化学反应机制和模型:一个视角
含能材料(EMs)是一类具有一定势垒的亚稳态功能材料,克服势垒可以快速释放EMs中储存的能量。彻底了解反应机制和准确量化反应速率是优化能量输出、确保减轻危险和评估电磁场安全水平的基本问题。该视角概述了化学反应机制和模型的研究进展,特别强调有机电磁场和活性金属。有机EM主要由碳、氢、氮和氧元素组成,能够实现超音速和自持爆炸反应,并能够输出大量能量。最近发现,铝、镁和硼等活性金属的加入可以增加 EM 配方的燃烧热和爆炸温度,从而引发了人们的研究兴趣。该观点首先介绍了通过多尺度模拟和实验方法揭示的电磁反应机制,包括热分解、冲击引发和后燃烧。然后,回顾了从所揭示的机制得出的物理模型的定量表征表达式,包括基本和唯象反应动力学模型等数学表达式,以及新兴的数据驱动的机器学习模型。最后概述了应用前景、存在的问题以及进一步的发展方向。
更新日期:2024-09-10
中文翻译:
含能材料的化学反应机制和模型:一个视角
含能材料(EMs)是一类具有一定势垒的亚稳态功能材料,克服势垒可以快速释放EMs中储存的能量。彻底了解反应机制和准确量化反应速率是优化能量输出、确保减轻危险和评估电磁场安全水平的基本问题。该视角概述了化学反应机制和模型的研究进展,特别强调有机电磁场和活性金属。有机EM主要由碳、氢、氮和氧元素组成,能够实现超音速和自持爆炸反应,并能够输出大量能量。最近发现,铝、镁和硼等活性金属的加入可以增加 EM 配方的燃烧热和爆炸温度,从而引发了人们的研究兴趣。该观点首先介绍了通过多尺度模拟和实验方法揭示的电磁反应机制,包括热分解、冲击引发和后燃烧。然后,回顾了从所揭示的机制得出的物理模型的定量表征表达式,包括基本和唯象反应动力学模型等数学表达式,以及新兴的数据驱动的机器学习模型。最后概述了应用前景、存在的问题以及进一步的发展方向。