当前位置:
X-MOL 学术
›
ACS Macro Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Remarkable Dielectric Breakdown Strength of Printable Polyelectrolyte Photopolymer Complexes
ACS Macro Letters ( IF 5.1 ) Pub Date : 2024-09-18 , DOI: 10.1021/acsmacrolett.4c00456 Ethan T Iverson 1 , Hudson Legendre 2 , Jason P Killgore 3 , Jaime C Grunlan 1, 2, 4 , Thomas J Kolibaba 3
ACS Macro Letters ( IF 5.1 ) Pub Date : 2024-09-18 , DOI: 10.1021/acsmacrolett.4c00456 Ethan T Iverson 1 , Hudson Legendre 2 , Jason P Killgore 3 , Jaime C Grunlan 1, 2, 4 , Thomas J Kolibaba 3
Affiliation
Polymer-based dielectrics are struggling to keep pace with the increasing demands of modern electronics. This lag in dielectric performance has spurred significant interest in the production of advanced dielectrics via novel chemistries and processing techniques. Polyelectrolyte complexes (PECs) have recently shown great promise as dielectric insulation, but processing challenges presented by these ionically bound networks limit their use to conformal thin films. Recent advances have enabled the additive manufacturing of PECs with vat photopolymerization, allowing the creation of a polyelectrolyte complex of arbitrary shape. Herein, multiple polyelectrolyte resin formulations, comprised of polyethylenimine and methacrylic acid (with varying amounts of 2-hydroxyethyl methacrylate and/or N,N-dimethylacrylamide), are investigated for the production of additively manufactured dielectric insulators. These dielectrics not only possess high dielectric breakdown strengths (>300 kV/mm), but their dielectric behavior can also be readily tailored through resin formulation and post-processing conditions. The presented vat photopolymerization of PECs allows for the creation of bulk dielectrics with arbitrary geometry, while the novel chemistry provides a practical route forward to produce dielectrics with precisely tailored properties for specific applications.
中文翻译:
可打印聚电解质光敏聚合物复合物的显著介电击穿强度
基于聚合物的电介质正在努力跟上现代电子产品日益增长的需求。介电性能的滞后激发了人们对通过新型化学和加工技术生产先进电介质的浓厚兴趣。聚电解质络合物 (PEC) 最近在介电绝缘方面显示出巨大的前景,但这些离子结合网络带来的加工挑战限制了它们在保形薄膜中的使用。最近的进展使具有还原光聚合的 PEC 增材制造成为可能,从而可以创建任意形状的聚电解质络合物。在此,研究了由聚乙烯亚胺和甲基丙烯酸(具有不同量的 2-羟乙基甲基丙烯酸酯和/或 N,N-二甲基丙烯酰胺)组成的多种聚电解质树脂配方,用于生产增材制造的介电绝缘体。这些电介质不仅具有高介电击穿强度 (>300 kV/mm),而且它们的介电性能也可以通过树脂配方和后处理条件轻松定制。所提出的 PEC 光聚合允许创建具有任意几何形状的体电介质,而新颖的化学技术为生产具有特定应用精确定制特性的电介质提供了一条实用的途径。
更新日期:2024-09-18
中文翻译:
可打印聚电解质光敏聚合物复合物的显著介电击穿强度
基于聚合物的电介质正在努力跟上现代电子产品日益增长的需求。介电性能的滞后激发了人们对通过新型化学和加工技术生产先进电介质的浓厚兴趣。聚电解质络合物 (PEC) 最近在介电绝缘方面显示出巨大的前景,但这些离子结合网络带来的加工挑战限制了它们在保形薄膜中的使用。最近的进展使具有还原光聚合的 PEC 增材制造成为可能,从而可以创建任意形状的聚电解质络合物。在此,研究了由聚乙烯亚胺和甲基丙烯酸(具有不同量的 2-羟乙基甲基丙烯酸酯和/或 N,N-二甲基丙烯酰胺)组成的多种聚电解质树脂配方,用于生产增材制造的介电绝缘体。这些电介质不仅具有高介电击穿强度 (>300 kV/mm),而且它们的介电性能也可以通过树脂配方和后处理条件轻松定制。所提出的 PEC 光聚合允许创建具有任意几何形状的体电介质,而新颖的化学技术为生产具有特定应用精确定制特性的电介质提供了一条实用的途径。