当前位置:
X-MOL 学术
›
Appl. Phys. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An UHF band planar resonator temperature sensor constructed from high-performance titanium dioxide system microwave dielectric ceramics: Toward integrated ceramic-based sensor devices
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-09-18 , DOI: 10.1063/5.0218434 Yaoxing Wang 1, 2, 3 , Mingkun Du 1, 2, 3 , Lingxia Li 1, 2, 3
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-09-18 , DOI: 10.1063/5.0218434 Yaoxing Wang 1, 2, 3 , Mingkun Du 1, 2, 3 , Lingxia Li 1, 2, 3
Affiliation
With the rapid fusion of temperature sensing technology and microwave technology, microwave temperature sensors have become the protagonist of competing research. We propose a planar resonator temperature sensor that combines substrate material modifications with sensor structure design. To realize this concept, high-performance TiO2-xwt. % ZnO (0 ≤ x ≤ 3) microwave dielectric ceramics are prepared. The various factors influencing dielectric properties, including crystal structure, phase composition, Raman vibration, microstructure, element valence, and oxygen vacancy, are completely investigated. The TiO2-0.7 wt. % ZnO ceramic exhibiting exceptional properties (εr = 106.6, Qf = 46 000 GHz, τf = 426.0 ppm/°C) is selected for substrate fabrication. The frequency and temperature dependence of εr and tan δ are analyzed at 2–4.5 GHz from −50 to 100 °C, revealing a good linearity between εr and temperature. A CSRR temperature sensor employing this substrate material is designed, simulated, fabricated, and validated from −50 to 90 °C. This sensor generates two resonance frequencies (around 0.5 and 1.4 GHz) in the UHF band, demonstrating sensitivities of 2.2 MHz/10 °C and 6.3 MHz/10 °C at the first and second resonance frequencies, along with an outstanding normalized sensitivity of approximately 0.045. Through a comprehensive analysis of the physical mechanisms affecting the sensor's sensitivity and quality factor, the design of the sensor is strengthened from the perspective of optimizing the performance of microwave dielectric ceramics. The regulation mechanism of dielectric characteristics is enriched and clarified, thereby achieving a synergistic improvement in sensor performance. This work expands the application scope of microwave dielectric ceramics and provides an innovative approach to environmental monitoring.
中文翻译:
由高性能二氧化钛系统微波介电陶瓷构成的 UHF 频段平面谐振器温度传感器:走向集成陶瓷传感器器件
随着温度传感技术与微波技术的快速融合,微波温度传感器成为竞相研究的主角。我们提出了一种平面谐振器温度传感器,它将基板材料修改与传感器结构设计相结合。为了实现这一概念,高性能TiO2-xwt。制备%ZnO(0≤x≤3)微波介质陶瓷。全面研究了影响介电性能的各种因素,包括晶体结构、相组成、拉曼振动、微观结构、元素价态和氧空位。 TiO2-0.7 重量。选择表现出优异性能(εr = 106.6,Qf = 46 000 GHz,τf = 426.0 ppm/°C)的 % ZnO 陶瓷用于基板制造。在 2–4.5 GHz、-50 至 100 °C 范围内分析了 εr 和 tan δ 的频率和温度依赖性,揭示了 εr 和温度之间良好的线性关系。采用这种基板材料的 CSRR 温度传感器在 −50 至 90 °C 的温度范围内进行了设计、模拟、制造和验证。该传感器在 UHF 频段产生两个谐振频率(大约 0.5 和 1.4 GHz),在第一和第二谐振频率下表现出 2.2 MHz/10 °C 和 6.3 MHz/10 °C 的灵敏度,以及大约0.045。通过综合分析影响传感器灵敏度和品质因数的物理机制,从优化微波介质陶瓷性能的角度加强传感器的设计。丰富和阐明介电特性的调控机制,从而实现传感器性能的协同提升。 这项工作扩大了微波介电陶瓷的应用范围,并为环境监测提供了一种创新方法。
更新日期:2024-09-18
中文翻译:
由高性能二氧化钛系统微波介电陶瓷构成的 UHF 频段平面谐振器温度传感器:走向集成陶瓷传感器器件
随着温度传感技术与微波技术的快速融合,微波温度传感器成为竞相研究的主角。我们提出了一种平面谐振器温度传感器,它将基板材料修改与传感器结构设计相结合。为了实现这一概念,高性能TiO2-xwt。制备%ZnO(0≤x≤3)微波介质陶瓷。全面研究了影响介电性能的各种因素,包括晶体结构、相组成、拉曼振动、微观结构、元素价态和氧空位。 TiO2-0.7 重量。选择表现出优异性能(εr = 106.6,Qf = 46 000 GHz,τf = 426.0 ppm/°C)的 % ZnO 陶瓷用于基板制造。在 2–4.5 GHz、-50 至 100 °C 范围内分析了 εr 和 tan δ 的频率和温度依赖性,揭示了 εr 和温度之间良好的线性关系。采用这种基板材料的 CSRR 温度传感器在 −50 至 90 °C 的温度范围内进行了设计、模拟、制造和验证。该传感器在 UHF 频段产生两个谐振频率(大约 0.5 和 1.4 GHz),在第一和第二谐振频率下表现出 2.2 MHz/10 °C 和 6.3 MHz/10 °C 的灵敏度,以及大约0.045。通过综合分析影响传感器灵敏度和品质因数的物理机制,从优化微波介质陶瓷性能的角度加强传感器的设计。丰富和阐明介电特性的调控机制,从而实现传感器性能的协同提升。 这项工作扩大了微波介电陶瓷的应用范围,并为环境监测提供了一种创新方法。