当前位置:
X-MOL 学术
›
SIAM J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Some Grönwall Inequalities for a Class of Discretizations of Time Fractional Equations on Nonuniform Meshes
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-09-18 , DOI: 10.1137/24m1631614 Yuanyuan Feng 1 , Lei Li 2 , Jian-Guo Liu 3 , Tao Tang 4
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-09-18 , DOI: 10.1137/24m1631614 Yuanyuan Feng 1 , Lei Li 2 , Jian-Guo Liu 3 , Tao Tang 4
Affiliation
SIAM Journal on Numerical Analysis, Volume 62, Issue 5, Page 2196-2221, October 2024.
Abstract. We consider the completely positive discretizations of fractional ordinary differential equations (FODEs) on nonuniform meshes. Making use of the resolvents for nonuniform meshes, we first establish comparison principles for the discretizations. Then we prove some discrete Grönwall inequalities using the comparison principles and careful analysis of the solutions to the time continuous FODEs. Our results do not have restriction on the step size ratio. The Grönwall inequalities for dissipative equations can be used to obtain the uniform-in-time error control and decay estimates of the numerical solutions. The Grönwall inequalities are then applied to subdiffusion problems and the time fractional Allen–Cahn equations for illustration.
中文翻译:
非均匀网格上一类时间分数阶方程离散化的一些 Grönwall 不等式
《SIAM 数值分析杂志》,第 62 卷,第 5 期,第 2196-2221 页,2024 年 10 月。
抽象的。我们考虑非均匀网格上分数常微分方程 (FODE) 的完全正离散化。利用非均匀网格的解决方案,我们首先建立离散化的比较原则。然后,我们使用比较原理并仔细分析时间连续 FODE 的解来证明一些离散 Grönwall 不等式。我们的结果对步长比没有限制。耗散方程的 Grönwall 不等式可用于获得数值解的均匀时间误差控制和衰减估计。然后将 Grönwall 不等式应用于次扩散问题和时间分数 Allen-Cahn 方程进行说明。
更新日期:2024-09-19
Abstract. We consider the completely positive discretizations of fractional ordinary differential equations (FODEs) on nonuniform meshes. Making use of the resolvents for nonuniform meshes, we first establish comparison principles for the discretizations. Then we prove some discrete Grönwall inequalities using the comparison principles and careful analysis of the solutions to the time continuous FODEs. Our results do not have restriction on the step size ratio. The Grönwall inequalities for dissipative equations can be used to obtain the uniform-in-time error control and decay estimates of the numerical solutions. The Grönwall inequalities are then applied to subdiffusion problems and the time fractional Allen–Cahn equations for illustration.
中文翻译:
非均匀网格上一类时间分数阶方程离散化的一些 Grönwall 不等式
《SIAM 数值分析杂志》,第 62 卷,第 5 期,第 2196-2221 页,2024 年 10 月。
抽象的。我们考虑非均匀网格上分数常微分方程 (FODE) 的完全正离散化。利用非均匀网格的解决方案,我们首先建立离散化的比较原则。然后,我们使用比较原理并仔细分析时间连续 FODE 的解来证明一些离散 Grönwall 不等式。我们的结果对步长比没有限制。耗散方程的 Grönwall 不等式可用于获得数值解的均匀时间误差控制和衰减估计。然后将 Grönwall 不等式应用于次扩散问题和时间分数 Allen-Cahn 方程进行说明。