Nature Catalysis ( IF 42.8 ) Pub Date : 2024-09-19 , DOI: 10.1038/s41929-024-01219-z Karma Zuraiqi, Yichao Jin, Caiden J. Parker, Jaydon Meilak, Nastaran Meftahi, Andrew J. Christofferson, Salvy P. Russo, Michelle J. S. Spencer, Huai Yong Zhu, Lizhuo Wang, Jun Huang, Rosalie K. Hocking, Ken Chiang, Sarina Sarina, Torben Daeneke
The outlook for sustainable economic and ecological growth projects an ammonia economy as a key enabler to the energy transition landscape. The predominance of the Haber–Bosch process, however, as the current industrial process for producing ammonia subdues the sustainability of establishing an energy route predicated on ammonia. Here we capitalize on the inherent atomic structure of liquid metal alloys and the ability to modulate the electronic and geometric structures of liquid metal catalysts to drive the thermocatalytic synthesis of ammonia. By exploiting the mobility of the metal atoms in the liquid metal configuration and purposefully designing disordered metal catalysts, we provide insights into designing future transition metal-based catalysts that produce ammonia from gaseous nitrogen and hydrogen under mild operating conditions. The use of a molten Cu–Ga catalyst offers a dynamic metal complex with synergistic advantages that lift the activity of its constituent elements, exceeding the activity of a control Ru-based catalyst.
中文翻译:
揭示用于氨合成的液体 Cu-Ga 催化剂中的金属流动性
可持续经济和生态增长的前景预测氨经济将成为能源转型格局的关键推动者。然而,哈伯-博世工艺的主导地位,作为当前生产氨的工业工艺,削弱了建立以氨为基础的能源路线的可持续性。在这里,我们利用液态金属合金固有的原子结构以及调节液态金属催化剂的电子和几何结构的能力来驱动氨的热催化合成。通过利用液态金属构型中金属原子的流动性并有目的地设计无序金属催化剂,我们为设计未来的过渡金属基催化剂提供了见解,这些催化剂在温和的操作条件下从气态氮和氢生产氨。使用熔融铜-镓催化剂提供了一种具有协同优势的动态金属络合物,可以提高其组成元素的活性,超过了对照钌基催化剂的活性。