当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One step from oxides to sustainable bulk alloys
Nature ( IF 50.5 ) Pub Date : 2024-09-18 , DOI: 10.1038/s41586-024-07932-w
Shaolou Wei 1 , Yan Ma 1 , Dierk Raabe 1
Affiliation  

Metallurgical production traditionally involves three steps: extracting metals from ores, mixing them into alloys by liquid processing and thermomechanical processing to achieve the desired microstructures1,2. This sequential approach, practised since the Bronze Age, reaches its limit today because of the urgent demand for a sustainable economy2,3,4,5: almost 10% of all greenhouse gas emissions are because of the use of fossil reductants and high-temperature metallurgical processing. Here we present a H2-based redox synthesis and compaction approach that reforms traditional alloy-making by merging metal extraction, alloying and thermomechanical processing into one single solid-state operation. We propose a thermodynamically informed guideline and a general kinetic conception to dissolve the classical boundaries between extractive and physical metallurgy, unlocking tremendous sustainable bulk alloy design opportunities. We exemplify this approach for the case of Fe–Ni invar bulk alloys6,7, one of the most appealing ferrous materials but the dirtiest to produce: invar shows uniquely low thermal expansion6,8,9, enabling key applications spanning from precision instruments to cryogenic components10,11,12,13. Yet, it is notoriously eco-unfriendly, with Ni causing more than 10 times higher CO2 emission than Fe per kilogram production2,14, qualifying this alloy class as a perfect demonstrator case. Our sustainable method turns oxides directly into green alloys in bulk forms, with application-worthy properties, all obtained at temperatures far below the bulk melting point, while maintaining a zero CO2 footprint.



中文翻译:


从氧化物到可持续大合金的一步



冶金生产传统上涉及三个步骤:从矿石中提取金属,通过液体加工和热机械加工将其混合成合金,以获得所需的微观结构1,2 。由于对可持续经济的迫切需求,这种从青铜时代开始实行的顺序方法如今已达到极限2,3,4,5 :所有温室气体排放量的近 10% 是由于使用化石还原剂和高浓度二氧化碳造成的。高温冶金加工。在这里,我们提出了一种基于H 2的氧化还原合成和压实方法,该方法通过将金属提取、合金化和热机械加工合并到一个单一的固态操作中来改革传统的合金制造。我们提出了热力学指导方针和一般动力学概念,以消除萃取冶金和物理冶金之间的经典界限,释放巨大的可持续大块合金设计机会。我们以 Fe-Ni 殷钢块体合金为例6,7 ,这是最具吸引力的黑色金属材料之一,但生产过程中最脏:殷钢表现出独特的低热膨胀性6,8,9 ,可实现精密仪器等关键应用至低温部件10、11、12、13 。然而,众所周知,它对环境不友好,每公斤产量中镍产生的 CO 2排放量比铁高 10 倍以上2,14 ,使该合金类别成为完美的示范案例。我们的可持续方法将氧化物直接转化为散装形式的绿色合金,具有值得应用的特性,所有这些都是在远低于散装熔点的温度下获得的,同时保持零CO 2足迹。

更新日期:2024-09-18
down
wechat
bug