Nature ( IF 50.5 ) Pub Date : 2024-09-18 , DOI: 10.1038/s41586-024-07951-7 Justine E Paul 1, 2 , Yuan Gao 1, 3, 4 , Yoo Kyung Go 2 , Luis E Rodriguez Koett 1, 2 , Anisha Sharma 1, 2 , Manxin Chen 1, 3 , Jacob J Lessard 1, 5 , Tolga Topkaya 1, 6 , Cecilia Leal 2 , Jeffrey S Moore 1, 5 , Philippe H Geubelle 1, 3 , Nancy R Sottos 1, 2
Materials with hierarchical architectures that combine soft and hard material domains with coalesced interfaces possess superior properties compared with their homogeneous counterparts1,2,3,4. These architectures in synthetic materials have been achieved through deterministic manufacturing strategies such as 3D printing, which require an a priori design and active intervention throughout the process to achieve architectures spanning multiple length scales5,6,7,8,9. Here we harness frontal polymerization spin mode dynamics to autonomously fabricate patterned crystalline domains in poly(cyclooctadiene) with multiscale organization. This rapid, dissipative processing method leads to the formation of amorphous and semi-crystalline domains emerging from the internal interfaces generated between the solid polymer and the propagating cure front. The size, spacing and arrangement of the domains are controlled by the interplay between the reaction kinetics, thermochemistry and boundary conditions. Small perturbations in the fabrication conditions reproducibly lead to remarkable changes in the patterned microstructure and the resulting strength, elastic modulus and toughness of the polymer. This ability to control mechanical properties and performance solely through the initial conditions and the mode of front propagation represents a marked advancement in the design and manufacturing of advanced multiscale materials.
中文翻译:
通过正面聚合控制结晶畴的图案化
与均质材料相比,具有分层结构的材料将软硬材料域与聚结界面相结合,具有更优越的性能1,2,3,4。合成材料中的这些架构是通过确定性制造策略(如 3D 打印)实现的,这需要先验设计和整个过程中的积极干预,以实现跨越多个长度尺度的架构5,6,7,8,9。在这里,我们利用前沿聚合自旋模式动力学在具有多尺度组织的聚(环辛烯)中自主构建图案化结晶域。这种快速、耗散的加工方法导致从固体聚合物和传播固化前沿之间产生的内部界面中形成无定形和半结晶结构域。域的大小、间距和排列由反应动力学、热化学和边界条件之间的相互作用控制。制造条件中的微小扰动可重复地导致图案化微观结构的显着变化,以及由此产生的聚合物的强度、弹性模量和韧性。这种仅通过初始条件和前沿传播模式来控制机械性能和性能的能力代表了先进多尺度材料设计和制造的显着进步。