General Relativity and Gravitation ( IF 2.1 ) Pub Date : 2024-09-18 , DOI: 10.1007/s10714-024-03296-8 Bijan Bagchi , Aritra Ghosh , Sauvik Sen
This article assesses Landauer’s principle from information theory in the context of area quantization of the Schwarzschild black hole. Within a quantum-mechanical perspective where Hawking evaporation can be interpreted in terms of transitions between the discrete states of the area (or mass) spectrum, we justify that Landauer’s principle holds consistently in the saturated form when the number of microstates of the black hole goes as \(2^n\), where \(n\) is a large positive integer labeling the levels of the area/mass spectrum in the semiclassical regime. This is equivalent to the area spacing \(\Delta A = \alpha l_P^2\) (in natural units), where \(\alpha = 4 \ln 2\) for which the entropy spacing between consecutive levels in Boltzmann units coincides exactly with one bit of information. We also comment on the situation for other values of \(\alpha \) prevalent in the literature.
中文翻译:
兰道尔原理和黑洞面积量子化
本文在史瓦西黑洞面积量子化的背景下评估了信息论中的兰道尔原理。从量子力学的角度来看,霍金蒸发可以用面积(或质量)谱的离散状态之间的转变来解释,我们证明当黑洞的微观状态数量增加时,兰道尔原理在饱和形式中始终成立。为\(2^n\) ,其中\(n\)是一个大的正整数,标记半经典体系中面积/质谱的级别。这相当于面积间距\(\Delta A = \alpha l_P^2\) (自然单位),其中\(\alpha = 4 \ln 2\)与玻尔兹曼单位中连续级别之间的熵间距一致完全用一点信息。我们还评论了文献中流行的其他\(\alpha \)值的情况。