Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-09-19 , DOI: 10.2140/ant.2024.18.1589 Shabnam Akhtari, Jeffrey D. Vaaler
We generalize an inequality for the determinant of a real matrix proved by A. Schinzel, to more general exterior products of vectors in Euclidean space. We apply this inequality to the logarithmic embedding of -units contained in a number field . This leads to a bound for the exterior product of -units expressed as a product of heights. Using a volume formula of P. McMullen we show that our inequality is sharp up to a constant that depends only on the rank of the -unit group but not on the field . Our inequality is related to a conjecture of F. Rodriguez Villegas.
中文翻译:
S 单元外积的界限
我们推广 A 证明的实数矩阵行列式的不等式。 chinzel,到欧几里德空间中向量的更一般的外积。我们将这个不等式应用于对数嵌入 - 数字字段中包含的单位 。这导致了外积的界限 - 以高度乘积表示的单位。使用 P. McMullen 的体积公式,我们表明我们的不等式急剧上升到一个仅取决于 run 的常数 属于 S 单位组,但不在场 k 上。我们的不平等与 F. Rodriguez Villegas 的猜想有关。