当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cyclic Atomic Layer Etching of PdSe2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202408154
Ji Eun Kang 1 , Seung Yup Choi 1 , Hye Won Han 2 , Ji Min Kim 2 , Ye Eun Kim 1 , Hyunho Seok 3 , Taesung Kim 3, 4 , Doo San Kim 1, 5 , Geun Young Yeom 1, 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202408154
Ji Eun Kang 1 , Seung Yup Choi 1 , Hye Won Han 2 , Ji Min Kim 2 , Ye Eun Kim 1 , Hyunho Seok 3 , Taesung Kim 3, 4 , Doo San Kim 1, 5 , Geun Young Yeom 1, 3
Affiliation
The unique characteristic of 2D transition-metal dichalcogenide (TMD) semiconductor materials such as PdSe2 is the ability of the bandgap to vary on the basis of the number of layers present. This variation results in a broad bandgap range spanning from semi-metallic to semiconducting materials, underscoring the significance of precisely controlling the material thickness. In this study, the thicknesses of chemical vapor deposited PdSe2 films are precisely controlled layer-by-layer via cyclic atomic layer etching (ALE), which comprised a radical adsorption step generated by oxygen and chlorine plasmas, followed by a desorption step with an organic solvent vapor such as formic acid. Cyclic etching with one monolayer of PdSe2/cycle is achieved using both types of adsorption gases while maintaining the ratio of Se/Pd underlying PdSe2 at ≈2. This cyclic ALE method is also applicable for smoothing TMD material surfaces by isotropically removing individual rough surface layers. Because this etching method only utilizes chemical reactions with radicals generated by plasmas and organic vapors, it is not only unaffected by the physical damage caused by the irradiation of energetic particles such as ions in plasmas, but also is applicable to 3D structure processing.
中文翻译:
PdSe2 的循环原子层蚀刻
2D 过渡金属硫化物 (TMD) 半导体材料(如 PdSe2)的独特特性是带隙能够根据存在的层数而变化。这种变化导致了从半导体到半导体材料的宽禁带范围,强调了精确控制材料厚度的重要性。在本研究中,通过循环原子层蚀刻 (ALE) 逐层精确控制化学气相沉积的 PdSe2 薄膜的厚度,该刻蚀包括由氧和氯等离子体产生的自由基吸附步骤,然后是用有机溶剂蒸气(如甲酸)进行的解吸步骤。使用两种类型的吸附气体实现单层 PdSe2/循环的循环蚀刻,同时保持 PdSe2 的 Se/Pd 比率为 ≈2。这种循环 ALE 方法也适用于通过各向同性去除单个粗糙表面层来平滑 TMD 材料表面。由于这种蚀刻方法仅利用与等离子体和有机蒸气产生的自由基发生化学反应,因此它不仅不受等离子体中离子等高能粒子照射造成的物理损伤的影响,而且适用于 3D 结构加工。
更新日期:2024-09-18
中文翻译:
PdSe2 的循环原子层蚀刻
2D 过渡金属硫化物 (TMD) 半导体材料(如 PdSe2)的独特特性是带隙能够根据存在的层数而变化。这种变化导致了从半导体到半导体材料的宽禁带范围,强调了精确控制材料厚度的重要性。在本研究中,通过循环原子层蚀刻 (ALE) 逐层精确控制化学气相沉积的 PdSe2 薄膜的厚度,该刻蚀包括由氧和氯等离子体产生的自由基吸附步骤,然后是用有机溶剂蒸气(如甲酸)进行的解吸步骤。使用两种类型的吸附气体实现单层 PdSe2/循环的循环蚀刻,同时保持 PdSe2 的 Se/Pd 比率为 ≈2。这种循环 ALE 方法也适用于通过各向同性去除单个粗糙表面层来平滑 TMD 材料表面。由于这种蚀刻方法仅利用与等离子体和有机蒸气产生的自由基发生化学反应,因此它不仅不受等离子体中离子等高能粒子照射造成的物理损伤的影响,而且适用于 3D 结构加工。