当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Bulk versus Nanoscale Hydrogen Storage Paradox Revealed by Material-System Co-Design
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202411763 Matthew D. Witman 1 , Kriston P. Brooks 2 , Samuel J. Sprik 3 , Brandon C. Wood 4 , Tae Wook Heo 4 , Keith G. Ray 4 , L. E. Klebanoff 1 , Austin Acosta 1 , Vitalie Stavila 1 , Mark D. Allendorf 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202411763 Matthew D. Witman 1 , Kriston P. Brooks 2 , Samuel J. Sprik 3 , Brandon C. Wood 4 , Tae Wook Heo 4 , Keith G. Ray 4 , L. E. Klebanoff 1 , Austin Acosta 1 , Vitalie Stavila 1 , Mark D. Allendorf 1
Affiliation
Metal hydrides are serious contenders for materials-based hydrogen storage to overcome constraints associated with compressed or liquefied H2. Their ultimate performance is usually evaluated using intrinsic material properties without considering a systems design perspective. An illustrative case with startling implications is (LiNH2+2LiH). Using models that simulate the storage system and associated fuel cell of a light-duty vehicle (LDV), the performance of the bulk hydrides is compared with a nanoscaled version in porous carbon (PC), (LiNH2+2LiH)@(6-nm PC). Using experimental material properties, the simulations show that (LiNH2+2LiH)@(6-nm PC) counterintuitively has higher usable gravimetric and volumetric capacities than the bulk counterpart on a system basis despite having lower capacities on a materials-only basis. Nanoscaling increases the thermal conductivity and lowers the desorption enthalpy, which consequently increases heat management efficiency. In a simulated drive cycle for fuel cell-powered LDV, the fuel cell is inoperable using bulk (LiNH2+2LiH) as the storage material but completes the drive cycle using the nanoscale material. These results challenge the notion that nanoscaling incurs mass and volume penalties. Instead, the synergistic nanoporous host-hydride interaction can favorably modulate chemical and heat transfer properties. Moreover, a co-design approach considering application-specific tradeoffs is essential to accurately assess a material's potential for real-world hydrogen storage.
中文翻译:
材料-系统协同设计揭示的体级与纳米级储氢悖论
金属氢化物是基于材料的储氢的有力竞争者,可以克服与压缩或液化 H2 相关的限制。它们的最终性能通常使用固有的材料特性进行评估,而不考虑系统设计的角度。一个具有惊人含义的说明性案例是 (LiNH2+2LiH)。使用模拟轻型汽车 (LDV) 的存储系统和相关燃料电池的模型,将本体氢化物的性能与多孔碳 (PC) (LiNH2+2LiH)@(6-nm PC) 中的纳米级版本进行了比较。使用实验材料特性,模拟表明 (LiNH2+2LiH)@(6-nm PC) 在系统基础上比体体具有更高的可用重量和体积容量,尽管仅基于材料的容量较低。纳米级增加了热导率并降低了解吸焓,从而提高了热管理效率。在燃料电池驱动的 LDV 的模拟驾驶循环中,燃料电池使用散装 (LiNH2+2LiH) 作为存储材料无法运行,但使用纳米级材料完成驾驶循环。这些结果挑战了纳米尺度会导致质量和体积损失的概念。相反,协同纳米多孔主氢化物相互作用可以有利地调节化学和传热特性。此外,考虑特定应用权衡的协同设计方法对于准确评估材料在现实世界中储存氢气的潜力至关重要。
更新日期:2024-09-18
中文翻译:
材料-系统协同设计揭示的体级与纳米级储氢悖论
金属氢化物是基于材料的储氢的有力竞争者,可以克服与压缩或液化 H2 相关的限制。它们的最终性能通常使用固有的材料特性进行评估,而不考虑系统设计的角度。一个具有惊人含义的说明性案例是 (LiNH2+2LiH)。使用模拟轻型汽车 (LDV) 的存储系统和相关燃料电池的模型,将本体氢化物的性能与多孔碳 (PC) (LiNH2+2LiH)@(6-nm PC) 中的纳米级版本进行了比较。使用实验材料特性,模拟表明 (LiNH2+2LiH)@(6-nm PC) 在系统基础上比体体具有更高的可用重量和体积容量,尽管仅基于材料的容量较低。纳米级增加了热导率并降低了解吸焓,从而提高了热管理效率。在燃料电池驱动的 LDV 的模拟驾驶循环中,燃料电池使用散装 (LiNH2+2LiH) 作为存储材料无法运行,但使用纳米级材料完成驾驶循环。这些结果挑战了纳米尺度会导致质量和体积损失的概念。相反,协同纳米多孔主氢化物相互作用可以有利地调节化学和传热特性。此外,考虑特定应用权衡的协同设计方法对于准确评估材料在现实世界中储存氢气的潜力至关重要。