当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrostatic Interactions Dominate the Surface Assembly of Silicon-Based Nanospheres on Carbon Nanofibers for Flexible Lithium-Ion Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202411663 Miaomiao Jiang 1 , Hongxia Luo 1 , Junliang Chen 1 , Lei Chen 2 , Wan Jiang 1, 3 , Jianping Yang 1, 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202411663 Miaomiao Jiang 1 , Hongxia Luo 1 , Junliang Chen 1 , Lei Chen 2 , Wan Jiang 1, 3 , Jianping Yang 1, 3
Affiliation
The construction of flexible freestanding silicon-based electrodes eliminates the addition of inactive materials, improving the overall energy density, and effectively avoiding the disadvantage of active materials being easily separated from the collector due to the volume effect. However, many reports of flexible freestanding electrodes lack long-term cycling stability. Here, 3 different silicon-based freestanding electrodes are designed and find that the freestanding electrode with surface assembly dominated by electrostatic interactions can significantly improve long-term cycling stability. Owing to better mechanical properties, this surface-assembled electrode demonstrates unique flexibility. The conductive framework and unique void structure not only reveal the excellent lithium-ion diffusion capability and charge-transfer kinetics but also provide ample space for the volume expansion of the silicon-based material, which endows electrodes with excellent electrochemical performance. With 2 folds, the capacity remains at 471 mA h g−1 after 1000 cycles (0.5 A g−1). In addition, the as-prepared flexible pouch cell maintains high capacity and cycling stability after folding, with an average capacity degradation of only 0.01% per cycle during 1000 cycles, highlighting its considerable potential in the development of flexible devices. Remarkably, such interfacial assembly on the fiber surface also enables the modulation of multilayer assembly.
中文翻译:
静电相互作用在柔性锂离子电池的碳纳米纤维上硅基纳米球的表面组装中占主导地位
柔性独立式硅基电极的结构消除了非活性材料的添加,提高了整体能量密度,有效避免了由于体积效应而导致活性材料容易与集电极分离的缺点。然而,许多关于柔性独立电极缺乏长期循环稳定性的报道。在这里,设计了 3 种不同的硅基独立电极,发现表面组装以静电相互作用为主的独立电极可以显著提高长期循环稳定性。由于具有更好的机械性能,这种表面组装的电极表现出独特的柔韧性。导电框架和独特的空隙结构不仅揭示了优异的锂离子扩散能力和电荷转移动力学,还为硅基材料的体积膨胀提供了充足的空间,从而赋予电极优异的电化学性能。2 倍后,容量在 1000 次循环 (0.5 A g-1) 后保持在 471 mA h g-1。此外,所制备的软包电池在折叠后保持了高容量和循环稳定性,在 1000 次循环中每个循环的平均容量下降仅为 0.01%,凸显了其在柔性器件开发中的巨大潜力。值得注意的是,光纤表面的这种界面组装也能够实现多层组装的调制。
更新日期:2024-09-18
中文翻译:
静电相互作用在柔性锂离子电池的碳纳米纤维上硅基纳米球的表面组装中占主导地位
柔性独立式硅基电极的结构消除了非活性材料的添加,提高了整体能量密度,有效避免了由于体积效应而导致活性材料容易与集电极分离的缺点。然而,许多关于柔性独立电极缺乏长期循环稳定性的报道。在这里,设计了 3 种不同的硅基独立电极,发现表面组装以静电相互作用为主的独立电极可以显著提高长期循环稳定性。由于具有更好的机械性能,这种表面组装的电极表现出独特的柔韧性。导电框架和独特的空隙结构不仅揭示了优异的锂离子扩散能力和电荷转移动力学,还为硅基材料的体积膨胀提供了充足的空间,从而赋予电极优异的电化学性能。2 倍后,容量在 1000 次循环 (0.5 A g-1) 后保持在 471 mA h g-1。此外,所制备的软包电池在折叠后保持了高容量和循环稳定性,在 1000 次循环中每个循环的平均容量下降仅为 0.01%,凸显了其在柔性器件开发中的巨大潜力。值得注意的是,光纤表面的这种界面组装也能够实现多层组装的调制。