当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic Pd-Au Catalyst for Selective Electrosynthesis of Dimethyl Carbonate in Conjunction with High-Rate Redox System
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202412402 Naohiro Fujinuma 1 , Natalie Page 2 , Anna G Boddy 3 , Joshua Rivkind 3 , Lindsey Tomlinson 3 , Erik P Hoy 3 , Samuel E Lofland 2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202412402 Naohiro Fujinuma 1 , Natalie Page 2 , Anna G Boddy 3 , Joshua Rivkind 3 , Lindsey Tomlinson 3 , Erik P Hoy 3 , Samuel E Lofland 2
Affiliation
This study reports ambient electrosynthesis of dimethyl carbonate with a palladium–gold catalyst. Material screening identifies a region of intermediate-catalyst binding energy that facilitates interfacial electron and proton transfers for selective carbonylation, achieving a distinct maximum of 92% faradaic efficiency to dimethyl carbonate. Structural and electrochemical analyses suggest that the alloying of palladium and gold effectively modulates the CO* binding energy to the catalytic surface, in accord with subsequent computational studies. With an extended heterogeneous–homogeneous catalytic environment with a halide redox mediator, a remarkable partial current density of 52 mA cm−2 is observed for dimethyl carbonate for 100 h of continuous operation.
中文翻译:
协同 Pd-Au 催化剂与高速氧化还原系统联合用于碳酸二甲酯选择性电合成
本研究报道了碳酸二甲酯与钯-金催化剂的环境电合成。材料筛选确定一个中间催化剂结合能区域,该区域有助于界面电子和质子转移以进行选择性羰基化,从而达到对碳酸二甲酯 92% 法拉第效率的明显最大值。结构和电化学分析表明,钯和金的合金化有效地调节了催化表面的 CO* 结合能,这与随后的计算研究一致。在具有卤化物氧化还原介质的扩展非均相-均相催化环境中,在连续运行 100 小时期间,观察到碳酸二甲酯的显着部分电流密度为 52 mA cm-2。
更新日期:2024-09-18
中文翻译:
协同 Pd-Au 催化剂与高速氧化还原系统联合用于碳酸二甲酯选择性电合成
本研究报道了碳酸二甲酯与钯-金催化剂的环境电合成。材料筛选确定一个中间催化剂结合能区域,该区域有助于界面电子和质子转移以进行选择性羰基化,从而达到对碳酸二甲酯 92% 法拉第效率的明显最大值。结构和电化学分析表明,钯和金的合金化有效地调节了催化表面的 CO* 结合能,这与随后的计算研究一致。在具有卤化物氧化还原介质的扩展非均相-均相催化环境中,在连续运行 100 小时期间,观察到碳酸二甲酯的显着部分电流密度为 52 mA cm-2。