当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polypyrrole@TiO2 Composite Nanotube System with Enhanced Capillary Fluid and Charge Transfer for High-Current Hydrovoltaic Energy Generation and Seawater Purification
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-16 , DOI: 10.1002/adfm.202407669 Haoyuan Xiao, Jingshuai Zhu, Lei Ding, Jiaxin Zheng, Chen Liu, Bing Du, Shiguo Chen, Yuanfeng Wang
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-16 , DOI: 10.1002/adfm.202407669 Haoyuan Xiao, Jingshuai Zhu, Lei Ding, Jiaxin Zheng, Chen Liu, Bing Du, Shiguo Chen, Yuanfeng Wang
Harnessing the energy generated from the evaporation of water has received considerable research attention in materials science; however, challenges such as poor conversion efficiency and low current output persist. Herein, an innovative synergistic material system based on titanium dioxide nanotubes coated with polypyrrole (PPy@TiO2NTs) is introduced for the simultaneous production of electricity and clean water from solar energy and seawater. The tubular structure of PPy@TiO2NT and the molecular interactions between TiO2 and PPy produce enhanced charge transfer, thereby providing the advantages of the hydrovoltaic effect, solar-driven water evaporation (SWE), and photocatalysis. Consequently, PPy@TiO2NT-loaded melamine foam can produce tens or more than a hundred microamperes of current in water of various salinities, which is an order of magnitude improvement over previously reported hydrovoltaic evaporation systems. In addition, under 1 sun irradiation, the system achieved an SWE rate of 2.13 kg m−2 h−1 and a methylene blue removal rate of more than 90% within 2 h. The proposed material system, featuring high electrical output and outstanding dual-mechanism water treatment capabilities, shows high potential for synergistically harnessing solar energy and seawater, as well as for environmental management.
中文翻译:
Polypyrrole@TiO2 复合纳米管系统,具有增强的毛细管流体和电荷转移,用于大电流水力光伏发电和海水净化
利用水分蒸发产生的能量在材料科学中受到了相当大的研究关注;然而,转换效率差和电流输出低等挑战仍然存在。在此,引入了一种基于涂有聚吡咯 (PPy@TiO2NTs) 的二氧化钛纳米管的创新协同材料系统,用于从太阳能和海水中同时生产电力和清洁水。PPy@TiO2NT 的管状结构以及 TiO2 和 PPy 之间的分子相互作用产生了增强的电荷转移,从而提供了水光伏效应、太阳能驱动水蒸发 (SWE) 和光催化的优势。因此,PPy@TiO2负载 NT 的三聚氰胺泡沫可以在各种盐度的水中产生数十或一百多微安的电流,这比以前报道的水力光伏蒸发系统提高了一个数量级。此外,在 1 次阳光照射下,该系统在 2 小时内实现了 2.13 kg m-2 h-1 的 SWE 速率和超过 90% 的亚甲基蓝去除率。所提出的材料系统具有高电力输出和出色的双机制水处理能力,在协同利用太阳能和海水以及环境管理方面显示出巨大潜力。
更新日期:2024-09-16
中文翻译:
Polypyrrole@TiO2 复合纳米管系统,具有增强的毛细管流体和电荷转移,用于大电流水力光伏发电和海水净化
利用水分蒸发产生的能量在材料科学中受到了相当大的研究关注;然而,转换效率差和电流输出低等挑战仍然存在。在此,引入了一种基于涂有聚吡咯 (PPy@TiO2NTs) 的二氧化钛纳米管的创新协同材料系统,用于从太阳能和海水中同时生产电力和清洁水。PPy@TiO2NT 的管状结构以及 TiO2 和 PPy 之间的分子相互作用产生了增强的电荷转移,从而提供了水光伏效应、太阳能驱动水蒸发 (SWE) 和光催化的优势。因此,PPy@TiO2负载 NT 的三聚氰胺泡沫可以在各种盐度的水中产生数十或一百多微安的电流,这比以前报道的水力光伏蒸发系统提高了一个数量级。此外,在 1 次阳光照射下,该系统在 2 小时内实现了 2.13 kg m-2 h-1 的 SWE 速率和超过 90% 的亚甲基蓝去除率。所提出的材料系统具有高电力输出和出色的双机制水处理能力,在协同利用太阳能和海水以及环境管理方面显示出巨大潜力。