当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polymer-Sorbent Direct Air Capture Contactors with Complex Geometries 3D-Printed via Templated Phase Inversion
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-16 , DOI: 10.1002/adfm.202410356 Seo-Yul Kim, Hannah E. Holmes, Yuxiang Wang, Simon C. Weston, Ryan P. Lively
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-16 , DOI: 10.1002/adfm.202410356 Seo-Yul Kim, Hannah E. Holmes, Yuxiang Wang, Simon C. Weston, Ryan P. Lively
Low-cost direct air capture (DAC) systems require efficient gas–solid contactors. These contactors provide rapid rates of heat and mass transport with minimal pressure drops. Triply periodic minimal surfaces (TPMS) are a class of geometries that are shown to have heat transfer properties that exceed those of other geometries, and these benefits are expected to manifest in mass transfer as well due to the analogies between heat and mass transfer. However, creating TPMS contactors is difficult using conventional manufacturing techniques such as injection molding. Non-solvent-induced phase separation (NIPS) of a polymeric ink containing the adsorbent is one way to construct adsorption contactors with excellent mass transport rates, but contactors have to date only been fabricated in simple geometries (e.g., films, fibers). This study demonstrates that NIPS of polymeric inks occurs within a simultaneously-dissolving, water-soluble, 3D-printed template. This templated phase inversion (TPI) technique can create seemingly unlimited macroscopic architectures, including TPMS contactors, using a variety of potential DAC adsorbents, including zeolite, silica, activated carbon, and metal–organic frameworks. SEM, micro-computed tomography, and nitrogen adsorption experiments reveal the microscopic pore structures and macroscopic geometries of the resulting sorbent contactors. TPMS DAC contactors with poly(ethyleneimine)/silica adsorbents are shown to have CO2 capture performances that rival or exceed other contactor geometries.
中文翻译:
通过模板化相反转 3D 打印具有复杂几何形状的聚合物吸附剂直接空气捕获接触器
低成本直接空气捕获 (DAC) 系统需要高效的气固接触器。这些接触器以最小的压降提供快速的热量和质量传输。三周期最小表面(TPMS)是一类几何形状,其传热特性超过其他几何形状,并且由于传热和传质之间的相似性,这些优点预计也会在传质中体现出来。然而,使用注塑成型等传统制造技术来制造 TPMS 接触器很困难。含有吸附剂的聚合物墨水的非溶剂诱导相分离(NIPS)是构建具有优异传质速率的吸附接触器的一种方法,但迄今为止接触器只能以简单的几何形状(例如薄膜、纤维)制造。这项研究表明,聚合物墨水的 NIPS 发生在同时溶解的水溶性 3D 打印模板内。这种模板化相转化 (TPI) 技术可以使用各种潜在的 DAC 吸附剂(包括沸石、二氧化硅、活性炭和金属有机框架)创建看似无限的宏观架构,包括 TPMS 接触器。 SEM、微型计算机断层扫描和氮气吸附实验揭示了所得吸附剂接触器的微观孔隙结构和宏观几何形状。采用聚(乙烯亚胺)/二氧化硅吸附剂的 TPMS DAC 接触器具有可与其他接触器几何形状相媲美或超过的 CO 2捕获性能。
更新日期:2024-09-16
中文翻译:
通过模板化相反转 3D 打印具有复杂几何形状的聚合物吸附剂直接空气捕获接触器
低成本直接空气捕获 (DAC) 系统需要高效的气固接触器。这些接触器以最小的压降提供快速的热量和质量传输。三周期最小表面(TPMS)是一类几何形状,其传热特性超过其他几何形状,并且由于传热和传质之间的相似性,这些优点预计也会在传质中体现出来。然而,使用注塑成型等传统制造技术来制造 TPMS 接触器很困难。含有吸附剂的聚合物墨水的非溶剂诱导相分离(NIPS)是构建具有优异传质速率的吸附接触器的一种方法,但迄今为止接触器只能以简单的几何形状(例如薄膜、纤维)制造。这项研究表明,聚合物墨水的 NIPS 发生在同时溶解的水溶性 3D 打印模板内。这种模板化相转化 (TPI) 技术可以使用各种潜在的 DAC 吸附剂(包括沸石、二氧化硅、活性炭和金属有机框架)创建看似无限的宏观架构,包括 TPMS 接触器。 SEM、微型计算机断层扫描和氮气吸附实验揭示了所得吸附剂接触器的微观孔隙结构和宏观几何形状。采用聚(乙烯亚胺)/二氧化硅吸附剂的 TPMS DAC 接触器具有可与其他接触器几何形状相媲美或超过的 CO 2捕获性能。