当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202408420 Qiang Wang 1 , Li Li 1 , Rongrong Liu 1 , Ping Wang 1 , Yapeng Wang 1 , Jun Liang 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-09-18 , DOI: 10.1002/adfm.202408420 Qiang Wang 1 , Li Li 1 , Rongrong Liu 1 , Ping Wang 1 , Yapeng Wang 1 , Jun Liang 1
Affiliation
The ability to generate heterostructures with a desirable charge transfer pathway is essential for achieving semiconductor photocatalysts with super photocatalytic activity. Herein, it is proposed to realize robust tailoring of effective charge transfer pathway in semiconductor-based heterostructures via work function regulation, and elucidate the influence of the work function of the semiconductor on the charge transfer mechanism at the heterostructure interface. Specifically, taking type-II heterostructure SrTiO3/Mn3O4 as an example, introducing BiFeO3 into SrTiO3 effectively regulate the work function of the (BiFeO3)x(SrTiO3)1−x/Mn3O4 (BxT1−x/Mn3O4) solid solution through optimizing the x value. Combined with in situ testing, the results show that the original type-II heterojunction SrTiO3/Mn3O4 is converted into S-scheme heterojunction (BiFeO3)0.3(SrTiO3)0.7/Mn3O4 when BiFeO3 is introduced. This increases the work function of the semiconductor, inducing the light-generated carriers to be guided and separated by the generated built-in electric field. Therefore, the implementation of this strategy can achieve efficient photocatalytic CO2 reduction. In contrast to pristine SrTiO3/Mn3O4, the (BiFeO3)0.3(SrTiO3)0.7/Mn3O4 heterostructure exhibits a 28-fold enhancement of in electron consumption rate during photocatalytic CO2 reduction, and the reaction mechanism is suggested. In this study, a strategy for effectively converting interfacial charge transfer pathways in semiconductor photocatalysts is developed to enhance the photoconversion kinetics of CO2 and H2O.
中文翻译:
在半导体光催化剂上定制界面电荷转移途径的有效策略:以 (BiFeO3)x(SrTiO3)1−x/Mn3O4 为例
产生具有所需电荷转移途径的异质结构的能力对于获得具有超光催化活性的半导体光催化剂至关重要。在此,提出通过功函数调节在基于半导体的异质结构中实现有效电荷转移途径的稳健定制,并阐明半导体的功函数对异质结构界面处电荷转移机制的影响。具体来说,以 II 型异质结构 SrTiO3/Mn3O4 为例,将 BiFeO3 引入 SrTiO3 中,有效调节 (BiFeO3)x(SrTiO3)1−x/Mn3O4 (BxT1−x/Mn3O4) 的功函数) 固体解决方案。结合原位测试,结果表明,当引入BiFeO3时,原始的II型异质结SrTiO3/Mn3O4转化为S型异质结(BiFeO3)0.3(SrTiO3)0.7/Mn3O4。这增加了半导体的功函数,使产生的光产生的载流子被产生的内置电场引导和分离。因此,该策略的实施可以实现高效的光催化 CO2 还原。与原始 SrTiO3/Mn3O4 相比,(BiFeO3)0.3(SrTiO3)0.7/Mn3O4 异质结构在光催化 CO2 还原过程中表现出 28 倍的电子消耗速率增加,并提出了反应机理。在本研究中,开发了一种在半导体光催化剂中有效转换界面电荷转移途径的策略,以增强 CO2 和 H2O 的光转化动力学。
更新日期:2024-09-18
中文翻译:
在半导体光催化剂上定制界面电荷转移途径的有效策略:以 (BiFeO3)x(SrTiO3)1−x/Mn3O4 为例
产生具有所需电荷转移途径的异质结构的能力对于获得具有超光催化活性的半导体光催化剂至关重要。在此,提出通过功函数调节在基于半导体的异质结构中实现有效电荷转移途径的稳健定制,并阐明半导体的功函数对异质结构界面处电荷转移机制的影响。具体来说,以 II 型异质结构 SrTiO3/Mn3O4 为例,将 BiFeO3 引入 SrTiO3 中,有效调节 (BiFeO3)x(SrTiO3)1−x/Mn3O4 (BxT1−x/Mn3O4) 的功函数) 固体解决方案。结合原位测试,结果表明,当引入BiFeO3时,原始的II型异质结SrTiO3/Mn3O4转化为S型异质结(BiFeO3)0.3(SrTiO3)0.7/Mn3O4。这增加了半导体的功函数,使产生的光产生的载流子被产生的内置电场引导和分离。因此,该策略的实施可以实现高效的光催化 CO2 还原。与原始 SrTiO3/Mn3O4 相比,(BiFeO3)0.3(SrTiO3)0.7/Mn3O4 异质结构在光催化 CO2 还原过程中表现出 28 倍的电子消耗速率增加,并提出了反应机理。在本研究中,开发了一种在半导体光催化剂中有效转换界面电荷转移途径的策略,以增强 CO2 和 H2O 的光转化动力学。