当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy storage chemistry: Atomic and electronic fundamental understanding insights for high-performance supercapacitors
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-09-17 , DOI: 10.1063/5.0203665
Thanigai Arul Kumaravelu, Ramana Ramya Jayapalan, Han-Wei Chang, Asokan Kandasami, Lionel Vayssieres, Chung-Li Dong

The scarcity of fuels, high pollution levels, climate change, and other major environmental issues are critical challenges that modern societies are facing, mostly originating from fossil fuels-based economies. These challenges can be addressed by developing green, eco-friendly, inexpensive energy sources and energy storage devices. Electrochemical energy storage materials possess high capacitance and superior power density. To engineer highly efficient next-generation electrochemical energy storage devices, the mechanisms of electrochemical reactions and redox behavior must be probed in operational environments. They can be studied by investigating atomic and electronic structures using in situ x-ray absorption spectroscopy (XAS) analysis. Such a technique has attracted substantial research and development interest in the field of energy science for over a decade. The mechanisms of charge/discharge, carrier transport, and ion intercalation/deintercalation can be elucidated. Supercapacitors generally store energy by two specific mechanisms—pseudocapacitance and electrochemical double-layer capacitance. In situ XAS is a powerful tool for probing and understanding these mechanisms. In this Review, both soft and hard x rays are used for the in situ XAS analysis of various representative electrochemical energy storage systems. This Review also showcases some of the highly efficient energy and power density candidates. Furthermore, the importance of synchrotron-based x-ray spectroscopy characterization techniques is enlightened. The impact of the electronic structure, local atomic structure, and electronically active elements/sites of the typical electrochemical energy storage candidates in operational conditions is elucidated. Regarding electrochemical energy storage mechanisms in their respective working environments, the unknown valence states and reversible/irreversible nature of elements, local hybridization, delocalized d-electrons spin states, participation of coordination shells, disorder, and faradaic/non-faradaic behavior are thoroughly discussed. Finally, the future direction of in situ XAS analysis combined with spatial chemical mapping from operando scanning transmission x-ray microscopy and other emerging characterization techniques is presented and discussed.

中文翻译:


储能化学:高性能超级电容器的原子和电子基础理解见解



燃料稀缺、污染严重、气候变化和其他重大环境问题是现代社会面临的严峻挑战,这些挑战主要源于以化石燃料为基础的经济。这些挑战可以通过开发绿色、环保、廉价的能源和储能装置来解决。电化学储能材料具有高电容和优异的功率密度。为了设计高效的下一代电化学储能装置,必须在操作环境中探索电化学反应和氧化还原行为的机制。可以通过使用原位 X 射线吸收光谱 (XAS) 分析研究原子和电子结构来研究它们。十多年来,这种技术引起了能源科学领域的广泛研究和开发兴趣。可以阐明充电/放电、载流子传输和离子嵌入/脱嵌的机制。超级电容器通常通过两种特定机制来存储能量——赝电容和电化学双层电容。原位 XAS 是探测和理解这些机制的强大工具。在本综述中,软和硬 X 射线均用于各种代表性电化学储能系统的原位 XAS 分析。本评论还展示了一些高效能源和功率密度候选产品。此外,基于同步加速器的 X 射线光谱表征技术的重要性也得到了启发。阐明了操作条件下典型电化学储能候选物的电子结构、局部原子结构和电子活性元素/位点的影响。 针对各自工作环境下的电化学储能机制,对元素的未知价态和可逆/不可逆性质、局域杂化、离域d电子自旋态、配位层的参与、无序以及法拉第/非法拉第行为进行了深入讨论。最后,提出并讨论了原位 XAS 分析与操作扫描透射 X 射线显微镜空间化学图谱和其他新兴表征技术相结合的未来方向。
更新日期:2024-09-17
down
wechat
bug