当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rechargeable Mg–Br2 Battery with Ultrafast Bromine Chemistry
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-09-18 , DOI: 10.1021/jacs.4c07707 Longyuan Guo 1 , Aosai Chen 2 , Aoxuan Wang 1 , Zhenglin Hu 1 , Haiming Zhang 2 , Jiayan Luo 3
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-09-18 , DOI: 10.1021/jacs.4c07707 Longyuan Guo 1 , Aosai Chen 2 , Aoxuan Wang 1 , Zhenglin Hu 1 , Haiming Zhang 2 , Jiayan Luo 3
Affiliation
A sustainable society necessitates the support of diversified energy storage systems. Magnesium metal batteries, known for the environmental friendliness, safety of dendrite-less, cost-effective, and high volumetric capacity of magnesium metal, exhibit promising prospects. However, the high charge density of the magnesium ion leads to sluggish ion diffusion in cathodes, posing challenges for developing magnesium metal battery systems with high power and high energy density. Here, inspired by the Hard–Soft-Acid–Base theory, we propose a soft-anion-induced bond weakening strategy to address the diffusion difficulty. The bulky and broadly electron-distributed succinimide ion (SN–) in SN–Mg–Br significantly weakens the Mg–Br bond, promoting rapid magnesium ion transport and enabling ultrafast bromine chemistry, thus realizing a highly rechargeable Mg–Br2 battery prototype. Benefiting from the solubilization of SN–, the Mg–Br2 batteries achieve a high discharge plateau of 2.7 V, a remarkable specific capacity of 326 mAh gBr–1, and an impressive lifespan of 400 cycles. Attributed to the half–half diffusion/adsorption–desorption control process mechanism, the batteries can be well cycled under high-rate charging at 10 C and ultralow temperatures down to −55 °C. This bond weakening strategy may stimulate the development of battery systems with similar high charge density to magnesium ion, toward high power and high energy density, paving the way for sustainable energy storage systems.
中文翻译:
具有超快溴化学成分的可充电 Mg–Br2 电池
可持续发展的社会需要多样化的储能系统的支持。镁金属电池以环境友好、无枝晶的安全性、成本效益高和金属镁的高容量而闻名,前景广阔。然而,镁离子的高电荷密度导致离子在阴极中的扩散缓慢,对开发高功率和高能量密度的镁金属电池系统构成挑战。在这里,受硬-软-酸-碱理论的启发,我们提出了一种软阴离子诱导的键弱化策略来解决扩散困难。SN-Mg-Br 中体积大且电子分布广泛的琥珀酰亚胺离子 (SN–) 显着削弱了 Mg-Br 键,促进了镁离子的快速传输并实现了超快溴化学,从而实现了高度可充电的 Mg-Br2 电池原型。得益于 SN–的溶解,Mg–Br2 电池实现了 2.7 V 的高放电平台、326 mAh gBr–1 的显着比容量和 400 次循环的令人印象深刻的使用寿命。得益于半扩散/吸附-脱附控制过程机制,电池可以在 10 C 的高速充电和低至 -55 °C 的超低温下很好地循环。 这种键弱化策略可能会刺激具有与镁离子相似的高电荷密度的电池系统的发展,朝着高功率和高能量密度发展,为可持续储能系统铺平道路。
更新日期:2024-09-18
中文翻译:
具有超快溴化学成分的可充电 Mg–Br2 电池
可持续发展的社会需要多样化的储能系统的支持。镁金属电池以环境友好、无枝晶的安全性、成本效益高和金属镁的高容量而闻名,前景广阔。然而,镁离子的高电荷密度导致离子在阴极中的扩散缓慢,对开发高功率和高能量密度的镁金属电池系统构成挑战。在这里,受硬-软-酸-碱理论的启发,我们提出了一种软阴离子诱导的键弱化策略来解决扩散困难。SN-Mg-Br 中体积大且电子分布广泛的琥珀酰亚胺离子 (SN–) 显着削弱了 Mg-Br 键,促进了镁离子的快速传输并实现了超快溴化学,从而实现了高度可充电的 Mg-Br2 电池原型。得益于 SN–的溶解,Mg–Br2 电池实现了 2.7 V 的高放电平台、326 mAh gBr–1 的显着比容量和 400 次循环的令人印象深刻的使用寿命。得益于半扩散/吸附-脱附控制过程机制,电池可以在 10 C 的高速充电和低至 -55 °C 的超低温下很好地循环。 这种键弱化策略可能会刺激具有与镁离子相似的高电荷密度的电池系统的发展,朝着高功率和高能量密度发展,为可持续储能系统铺平道路。