当前位置:
X-MOL 学术
›
J. Med. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
GPCRSPACE: A New GPCR Real Expanded Library Based on Large Language Models Architecture and Positive Sample Machine Learning Strategies
Journal of Medicinal Chemistry ( IF 6.8 ) Pub Date : 2024-09-17 , DOI: 10.1021/acs.jmedchem.4c01983 Shiming Chen 1 , Feisheng Zhong 1
Journal of Medicinal Chemistry ( IF 6.8 ) Pub Date : 2024-09-17 , DOI: 10.1021/acs.jmedchem.4c01983 Shiming Chen 1 , Feisheng Zhong 1
Affiliation
The quest for novel therapeutics targeting G protein-coupled receptors (GPCRs), essential in numerous physiological processes, is crucial in drug discovery. Despite the abundance of GPCR-targeting drugs, many receptors lack selective modulators, indicating a significant untapped therapeutic potential. To bridge this gap, we introduce GPCRSPACE, a novel GPCR-focused purchasable real chemical library developed using the G protein-coupled receptors large language models (GPCR LLM) architecture. Different from traditional machine learning models, GPCR LLM uses a positive sample machine learning strategy for training and does not need to construct any negative samples. This not only reduces false negatives but also reduces the time to label negative samples. GPCR LLM accelerates the identification and screening of potential GPCR-interactive compounds by learning the chemical space of GPCR-targeting molecules. GPCRSPACE, built on GPCR LLM, outperforms existing chemical data sets in synthesizability, structural diversity, and GPCR-likeness, making it a valuable tool for GPCR drug discovery.
中文翻译:
GPCRSPACE:基于大型语言模型架构和正样本机器学习策略的新型 GPCR Real 扩展库
寻找靶向 G 蛋白偶联受体 (GPCR) 的新型疗法在许多生理过程中至关重要,在药物发现中至关重要。尽管有丰富的 GPCR 靶向药物,但许多受体缺乏选择性调节剂,这表明存在巨大的未开发治疗潜力。为了弥合这一差距,我们引入了 GPCRSPACE,这是一种使用 G 蛋白偶联受体大型语言模型 (GPCR LLM。与传统的机器学习模型不同,GPCR LLM 使用正样本机器学习策略进行训练,不需要构造任何负样本。这不仅减少了假阴性,还缩短了标记阴性样品的时间。GPCR LLM 通过学习 GPCR 靶向分子的化学空间来加速潜在 GPCR 相互作用化合物的鉴定和筛选。GPCRSPACE 基于 GPCR LLM,在可合成性、结构多样性和 GPCR 相似性方面优于现有的化学数据集,使其成为 GPCR 药物发现的宝贵工具。
更新日期:2024-09-17
中文翻译:
GPCRSPACE:基于大型语言模型架构和正样本机器学习策略的新型 GPCR Real 扩展库
寻找靶向 G 蛋白偶联受体 (GPCR) 的新型疗法在许多生理过程中至关重要,在药物发现中至关重要。尽管有丰富的 GPCR 靶向药物,但许多受体缺乏选择性调节剂,这表明存在巨大的未开发治疗潜力。为了弥合这一差距,我们引入了 GPCRSPACE,这是一种使用 G 蛋白偶联受体大型语言模型 (GPCR LLM。与传统的机器学习模型不同,GPCR LLM 使用正样本机器学习策略进行训练,不需要构造任何负样本。这不仅减少了假阴性,还缩短了标记阴性样品的时间。GPCR LLM 通过学习 GPCR 靶向分子的化学空间来加速潜在 GPCR 相互作用化合物的鉴定和筛选。GPCRSPACE 基于 GPCR LLM,在可合成性、结构多样性和 GPCR 相似性方面优于现有的化学数据集,使其成为 GPCR 药物发现的宝贵工具。