当前位置: X-MOL 学术Nucleic Acids Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A deep learning-based method enables the automatic and accurate assembly of chromosome-level genomes
Nucleic Acids Research ( IF 16.6 ) Pub Date : 2024-09-17 , DOI: 10.1093/nar/gkae789
Zijie Jiang 1 , Zhixiang Peng 1 , Zhaoyuan Wei 1 , Jiahe Sun 1 , Yongjiang Luo 1 , Lingzi Bie 1 , Guoqing Zhang 1 , Yi Wang 1
Affiliation  

The application of high-throughput chromosome conformation capture (Hi-C) technology enables the construction of chromosome-level assemblies. However, the correction of errors and the anchoring of sequences to chromosomes in the assembly remain significant challenges. In this study, we developed a deep learning-based method, AutoHiC, to address the challenges in chromosome-level genome assembly by enhancing contiguity and accuracy. Conventional Hi-C-aided scaffolding often requires manual refinement, but AutoHiC instead utilizes Hi-C data for automated workflows and iterative error correction. When trained on data from 300+ species, AutoHiC demonstrated a robust average error detection accuracy exceeding 90%. The benchmarking results confirmed its significant impact on genome contiguity and error correction. The innovative approach and comprehensive results of AutoHiC constitute a breakthrough in automated error detection, promising more accurate genome assemblies for advancing genomics research.

中文翻译:


基于深度学习的方法能够自动准确地组装染色体水平的基因组



高通量染色体构象捕获 (Hi-C) 技术的应用使染色体水平组装体的构建成为可能。然而,纠正错误和将序列锚定到组装中的染色体仍然是重大挑战。在这项研究中,我们开发了一种基于深度学习的方法 AutoHiC,通过提高连续性和准确性来解决染色体水平基因组组装的挑战。传统的 Hi-C 辅助脚手架通常需要手动优化,但 AutoHiC 反而利用 Hi-C 数据进行自动化工作流程和迭代纠错。当使用来自 300+ 物种的数据进行训练时,AutoHiC 表现出超过 90% 的稳健平均错误检测准确率。基准测试结果证实了其对基因组连续性和纠错的显着影响。AutoHiC 的创新方法和综合结果构成了自动错误检测的突破,有望为推进基因组学研究提供更准确的基因组组装。
更新日期:2024-09-17
down
wechat
bug