Nature Ecology & Evolution ( IF 13.9 ) Pub Date : 2024-09-18 , DOI: 10.1038/s41559-024-02543-0 Christopher Blake 1 , Jake N Barber 1 , Tim Connallon 1 , Michael J McDonald 1
Global ecosystems are rapidly approaching tipping points, where minute shifts can lead to drastic ecological changes. Theory predicts that evolution can shape a system’s tipping point behaviour, but direct experimental support is lacking. Here we investigate the power of evolutionary processes to alter these critical thresholds and protect an ecological community from collapse. To do this, we propagate a two-species microbial system composed of Escherichia coli and baker’s yeast, Saccharomyces cerevisiae, for over 4,000 generations, and map ecological stability before and after coevolution. Our results reveal that tipping points—and other geometric properties of ecological communities—can evolve to alter the range of conditions under which our microbial community can flourish. We develop a mathematical model to illustrate how evolutionary changes in parameters such as growth rate, carrying capacity and resistance to environmental change affect ecological resilience. Our study shows that adaptation of key species can shift an ecological community’s tipping point, potentially promoting ecological stability or accelerating collapse.
中文翻译:
临界点的进化转变可以促进或阻止微生物群落的崩溃
全球生态系统正在迅速接近临界点,微小的变化可能导致剧烈的生态变化。理论预测进化可以塑造系统的临界点行为,但缺乏直接的实验支持。在这里,我们研究了进化过程改变这些关键阈值并保护生态群落免于崩溃的力量。为此,我们繁殖了一个由大肠杆菌和面包酵母组成的两个物种微生物系统,即酿酒酵母,超过 4,000 代,并绘制了协同进化前后的生态稳定性图。我们的结果表明,临界点和生态群落的其他几何特性可以进化以改变我们的微生物群落可以蓬勃发展的条件范围。我们开发了一个数学模型来说明增长率、承载能力和对环境变化的抵抗力等参数的进化变化如何影响生态恢复力。我们的研究表明,关键物种的适应可以改变生态群落的临界点,从而可能促进生态稳定或加速崩溃。